Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39325610

RESUMO

We propose wake-sleep consolidated learning (WSCL), a learning strategy leveraging complementary learning system (CLS) theory and the wake-sleep phases of the human brain to improve the performance of deep neural networks (DNNs) for visual classification tasks in continual learning (CL) settings. Our method learns continually via the synchronization between distinct wake and sleep phases. During the wake phase, the model is exposed to sensory input and adapts its representations, ensuring stability through a dynamic parameter freezing mechanism and storing episodic memories in a short-term temporary memory (similar to what happens in the hippocampus). During the sleep phase, the training process is split into nonrapid eye movement (NREM) and rapid eye movement (REM) stages. In the NREM stage, the model's synaptic weights are consolidated using replayed samples from the short-term and long-term memory and the synaptic plasticity mechanism is activated, strengthening important connections and weakening unimportant ones. In the REM stage, the model is exposed to previously-unseen realistic visual sensory experience, and the dreaming process is activated, which enables the model to explore the potential feature space, thus preparing synapses for future knowledge. We evaluate the effectiveness of our approach on four benchmark datasets: CIFAR-10, CIFAR-100, Tiny-ImageNet, and FG-ImageNet. In all cases, our method outperforms the baselines and prior work, yielding a significant performance gain on continual visual classification tasks. Furthermore, we demonstrate the usefulness of all processing stages and the importance of dreaming to enable positive forward transfer (FWT). The code is available at: https://github.com/perceivelab/wscl.

2.
Artif Intell Med ; 118: 102114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34412837

RESUMO

COVID-19 infection caused by SARS-CoV-2 pathogen has been a catastrophic pandemic outbreak all over the world, with exponential increasing of confirmed cases and, unfortunately, deaths. In this work we propose an AI-powered pipeline, based on the deep-learning paradigm, for automated COVID-19 detection and lesion categorization from CT scans. We first propose a new segmentation module aimed at automatically identifying lung parenchyma and lobes. Next, we combine the segmentation network with classification networks for COVID-19 identification and lesion categorization. We compare the model's classification results with those obtained by three expert radiologists on a dataset of 166 CT scans. Results showed a sensitivity of 90.3% and a specificity of 93.5% for COVID-19 detection, at least on par with those yielded by the expert radiologists, and an average lesion categorization accuracy of about 84%. Moreover, a significant role is played by prior lung and lobe segmentation, that allowed us to enhance classification performance by over 6 percent points. The interpretation of the trained AI models reveals that the most significant areas for supporting the decision on COVID-19 identification are consistent with the lesions clinically associated to the virus, i.e., crazy paving, consolidation and ground glass. This means that the artificial models are able to discriminate a positive patient from a negative one (both controls and patients with interstitial pneumonia tested negative to COVID) by evaluating the presence of those lesions into CT scans. Finally, the AI models are integrated into a user-friendly GUI to support AI explainability for radiologists, which is publicly available at http://perceivelab.com/covid-ai. The whole AI system is unique since, to the best of our knowledge, it is the first AI-based software, publicly available, that attempts to explain to radiologists what information is used by AI methods for making decisions and that proactively involves them in the decision loop to further improve the COVID-19 understanding.


Assuntos
COVID-19 , Inteligência Artificial , Humanos , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA