Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(24): e2300300, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657944

RESUMO

Reconstructing functional sequence motifs of proteins, using statistical copolymers greatly reduces the information content, but simplifies synthesis significantly. Key amino acid residues involved in the adhesion of mussel foot proteins are identified. The side-chain functionalities of Dopa, lysine, and arginine are abstracted and incorporated into acrylate monomers to allow controlled radical polymerization. The resulting Dopa-acrylate (Y*-acr), arginine-acrylate (R-acr), and lysine-acrylate (K-acr) monomers are polymerized in different monomer ratios and compositions by reversible addition fragmentation transfer polymerization with a poly(ethylene glycol) (PEG) macrochain transfer agent. This results in two sets of PEG-block-copolymers with statistical mixtures and different monomer ratios of catechol/primary amine and catechol/guanidine side-chain functionalities, both important pairs for mimicking π-cation interactions. The coating behavior of these PEG-block-copolymers is evaluated using quartz crystal microbalance with dissipation energy monitoring (QCM-D), leading to non-covalent PEGylation of the substrates with clear compositional optima in the coating stability and antifouling properties. The coatings prevent non-reversible albumin or serum adsorption, as well as reduce cellular adhesion and fungal spore attachment.


Assuntos
Bivalves , Lisina , Animais , Adesivos , Polímeros , Di-Hidroxifenilalanina/química , Acrilatos , Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA