Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(15): 3141-3174, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877304

RESUMO

Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.


Assuntos
Quimiocina CCL21 , Células Dendríticas , Exocitose , Receptores CCR7 , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Quimiocina CCL21/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células Dendríticas/metabolismo , Receptores CCR7/metabolismo , Receptores CCR7/genética , Junções Intercelulares/metabolismo , Migração Transendotelial e Transepitelial , Endotélio Linfático/metabolismo , Endotélio Linfático/citologia , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Técnicas de Cocultura , Células Cultivadas , Movimento Celular
2.
Traffic ; 21(5): 386-397, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32144825

RESUMO

The human Niemann-Pick C1 (NPC1) gene encoding a 1278 amino acid protein is very heterogeneous. While some variants represent benign polymorphisms, NPC disease carriers and patients may possess rare variants, whose functional importance remains unknown. An NPC1 cDNA construct known as NPC1 wild-type variant (WT-V), distributed between laboratories and used as a WT control in several studies, also contains changes regarding specific amino acids compared to the NPC1 Genbank reference sequence. To improve the dissection of subtle functional differences, we generated human cells stably expressing NPC1 variants from the AAVS1 safe-harbor locus on an NPC1-null background engineered by CRISPR/Cas9 editing. We then employed high-content imaging with automated image analysis to quantitatively assess LDL-induced, time-dependent changes in lysosomal cholesterol content and lipid droplet formation. Our results indicate that the L472P change present in NPC1 WT-V compromises NPC1 functionality in lysosomal cholesterol export. All-atom molecular dynamics simulations suggest that the L472P change alters the relative position of the NPC1 middle and the C-terminal luminal domains, disrupting the recently characterized cholesterol efflux tunnel. These results reveal functional defects in NPC1 WT-V and highlight the strength of simulations and quantitative imaging upon stable protein expression in elucidating subtle differences in protein function.


Assuntos
Colesterol , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas , Transporte Biológico , Colesterol/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Simulação de Dinâmica Molecular , Proteína C1 de Niemann-Pick , Proteínas/metabolismo
3.
J Cell Sci ; 130(5): 892-902, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096473

RESUMO

The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous 'unit length form' vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells.


Assuntos
Actinas/metabolismo , Filamentos Intermediários/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fibras de Estresse/metabolismo , Vimentina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Fosforilação
4.
J Cell Sci ; 130(6): 1147-1157, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137756

RESUMO

Adaptation of cell shape and polarization through the formation and retraction of cellular protrusions requires balancing of endocytosis and exocytosis combined with fine-tuning of the local activity of small GTPases like Rab8. Here, we show that endocytic turnover of the plasma membrane at protrusions is directly coupled to surface removal and inactivation of Rab8. Removal is induced by reduced membrane tension and mediated by the GTPase regulator associated with focal adhesion kinase-1 (GRAF1, also known as ARHGAP26), a regulator of clathrin-independent endocytosis. GRAF1-depleted cells were deficient in multi-directional spreading and displayed elevated levels of GTP-loaded Rab8, which was accumulated at the tips of static protrusions. Furthermore, GRAF1 depletion impaired lumen formation and spindle orientation in a 3D cell culture system, indicating that GRAF1 activity regulates polarity establishment. Our data suggest that GRAF1-mediated removal of Rab8 from the cell surface restricts its activity during protrusion formation, thereby facilitating dynamic adjustment of the polarity axis.


Assuntos
Polaridade Celular , Endocitose , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Extensões da Superfície Celular/metabolismo , Cães , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Metaloproteinase 14 da Matriz/metabolismo , Ligação Proteica , Transporte Proteico , Fuso Acromático/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(1): 148-53, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535387

RESUMO

Exocytosis is tightly regulated in many cellular processes, from neurite expansion to tumor proliferation. Rab8, a member of the Rab family of small GTPases, plays an important role in membrane trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rabin8 is a guanine nucleotide exchange factor (GEF) and major activator of Rab8. Investigating how Rabin8 is activated in cells is thus pivotal to the understanding of the regulation of exocytosis. Here we show that phosphorylation serves as an important mechanism for Rabin8 activation. We identified Rabin8 as a direct phospho-substrate of ERK1/2 in response to EGF signaling. At the molecular level, ERK phosphorylation relieves the autoinhibition of Rabin8, thus promoting its GEF activity. We further demonstrate that blocking ERK1/2-mediated phosphorylation of Rabin8 inhibits transferrin recycling to the plasma membrane. Together, our results suggest that ERK1/2 activate Rabin8 to regulate vesicular trafficking to the plasma membrane in response to extracellular signaling.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Quinases do Centro Germinativo , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Transferrina/metabolismo
6.
Biochim Biophys Acta ; 1863(5): 1006-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26775587

RESUMO

In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment.


Assuntos
Peroxissomos/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Peroxissomos/química , Fosfatidilinositóis/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/genética
7.
Hum Mol Genet ; 24(8): 2185-200, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552655

RESUMO

Proper functioning of cilia, hair-like structures responsible for sensation and locomotion, requires nephrocystin-5 (NPHP5) and a multi-subunit complex called the Bardet-Biedl syndrome (BBS)ome, but their precise relationship is not understood. The BBSome is involved in the trafficking of membrane cargos to cilia. While it is known that a loss of any single subunit prevents ciliary trafficking of the BBSome and its cargos, the mechanisms underlying ciliary entry of this complex are not well characterized. Here, we report that a transition zone protein NPHP5 contains two separate BBS-binding sites and interacts with the BBSome to mediate its integrity. Depletion of NPHP5, or expression of NPHP5 mutant missing one binding site, specifically leads to dissociation of BBS2 and BBS5 from the BBSome and loss of ciliary BBS2 and BBS5 without compromising the ability of the other subunits to traffic into cilia. Depletion of Cep290, another transition zone protein that directly binds to NPHP5, causes additional dissociation of BBS8 and loss of ciliary BBS8. Furthermore, delivery of BBSome cargos, smoothened, VPAC2 and Rab8a, to the ciliary compartment is completely disabled in the absence of single BBS subunits, but is selectively impaired in the absence of NPHP5 or Cep290. These findings define a new role of NPHP5 and Cep290 in controlling integrity and ciliary trafficking of the BBSome, which in turn impinge on the delivery of ciliary cargo.


Assuntos
Antígenos de Neoplasias/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Cílios/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Síndrome de Bardet-Biedl/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ciclo Celular , Cílios/genética , Proteínas do Citoesqueleto , Humanos , Complexos Multiproteicos/genética , Proteínas de Neoplasias/genética , Transporte Proteico
8.
PLoS Genet ; 10(3): e1004193, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603431

RESUMO

Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.


Assuntos
Adesões Focais/genética , Rim/crescimento & desenvolvimento , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Animais , Células Epiteliais/metabolismo , Rim/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Morfogênese/genética , Fosforilação , Transdução de Sinais/genética , Vinculina/metabolismo
9.
Curr Opin Lipidol ; 27(3): 282-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27054443

RESUMO

PURPOSE OF REVIEW: In this article, we summarize the present information related to the export of LDL-derived cholesterol from late endosomes, with a focus on Nieman-Pick disease, type C1 (NPC1) cholesterol delivery toward the endoplasmic reticulum (ER). We review data suggesting that several pathways may operate in parallel, including membrane transport routes and membrane contact sites (MCSs). RECENT FINDINGS: There is increasing appreciation that MCSs provide an important mechanism for intermembrane lipid transfer. In late endosome-ER contacts, three protein bridges involving oxysterol binding protein related protein (ORP)1L-vesicle associated membrane protein-associated protein (VAP), steroidogenic acute regulatory protein (StAR)D3-VAP and ORP5-NPC1 proteins have been reported. How much they contribute to the flux of LDL-cholesterol to the ER is currently open. Studies for lipid transfer via MCSs have been most advanced in Saccharomyces cerevisiae. Recently, a new sterol-binding protein family conserved between yeast and man was identified. Its members localize at MCSs and were named lipid transfer protein anchored at membrane contact sites (Lam) proteins. In yeast, sterol transfer between the ER and the yeast lysosome may be facilitated by a Lam protein. SUMMARY: Increasing insights into the role of MCSs in directional sterol delivery between membranes propose that they might provide routes for LDL-cholesterol transfer to the ER. Future work should reveal which specific contacts may operate for this, and how they are controlled by cholesterol homeostatic machineries.


Assuntos
LDL-Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Transporte Biológico , Endossomos/metabolismo , Humanos , Membranas Intracelulares/metabolismo
10.
Neurobiol Dis ; 96: 335-345, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27425888

RESUMO

In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.


Assuntos
Desenho de Fármacos , Variação Genética/genética , Neurturina/química , Neurturina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Anfetamina/farmacologia , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Masculino , Modelos Moleculares , Neurturina/genética , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Ratos Wistar , Comportamento Estereotipado/efeitos dos fármacos , Simpatolíticos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Exp Cell Res ; 331(2): 278-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25447204

RESUMO

ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3-VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and ß1-integrin activity were enhanced by ORP3-VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas ras/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , Ativação Enzimática , Proteínas de Ligação a Ácido Graxo , Células HEK293 , Humanos , Integrina beta1/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Proteínas de Transporte Vesicular/biossíntese
12.
Cell Mol Life Sci ; 72(10): 1967-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25420878

RESUMO

Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Moléculas de Adesão Celular/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Recombinantes/metabolismo , Triglicerídeos/metabolismo , Linhagem Celular Tumoral , Imunofluorescência , Teste de Complementação Genética , Humanos , Hidrólise , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Interferência de RNA , Leveduras
13.
Nat Commun ; 15(1): 2547, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514695

RESUMO

Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.


Assuntos
Actinas , Adesões Focais , Actinas/metabolismo , Adesões Focais/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Isoformas de Proteínas/metabolismo
14.
J Biol Chem ; 287(19): 15602-9, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22433857

RESUMO

Primary cilia are microtubule-based solitary membrane projections on the cell surface that play important roles in signaling and development. Recent studies have demonstrated that polarized vesicular trafficking involving the small GTPase Rab8 and its guanine nucleotide exchange factor Rabin8 is essential for primary ciliogenesis. In this study, we show that a highly conserved region of Rabin8 is pivotal for its activation as a guanine nucleotide exchange factor for Rab8. In addition, in its activated conformation, Rabin8 interacts with Sec15, a subunit of the exocyst and downstream effector of Rab8. Expression of constitutively activated Rab8 promotes the association of Sec15 with Rabin8. Using immunofluorescence microscopy, we found that Sec15 co-localized with Rab8 along the primary cilium. Inhibition of Sec15 function in cells led to defects in primary ciliogenesis. The Rabin8-Rab8-Sec15 interaction may couple the activation of Rab8 to the recruitment of the Rab8 effector and is involved in the regulation of vesicular trafficking for primary cilium formation.


Assuntos
Cílios/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas de Ligação ao GTP/genética , Quinases do Centro Germinativo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/genética
15.
Nature ; 448(7149): 73-7, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17611540

RESUMO

In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.


Assuntos
Fatores de Crescimento Neural/fisiologia , Neurônios/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Clonagem Molecular , Sequência Conservada , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Processamento de Proteína Pós-Traducional , RNA Mensageiro , Ratos , Ratos Wistar , Substância Negra/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(14): 6346-51, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308558

RESUMO

Primary cilia are microtubule-based membrane projections located at the surface of many cells. Defects in primary cilia formation have been implicated in a number of genetic disorders, such as Bardet-Biedl Syndrome and Polycystic Kidney Disease. Recent studies have demonstrated that polarized vesicular transport involving Rab8 and its guanine nucleotide-exchange factor Rabin8 is essential for primary ciliogenesis. Here we report that Rabin8 is a direct downstream effector of Rab11, which functions in membrane trafficking from the trans-Golgi network and recycling endosomes. Rab11, in its GTP-bound form, interacts with Rabin8 and kinetically stimulates the guanine nucleotide-exchange activity of Rabin8 toward Rab8. Rab11 is enriched at the base of the primary cilia and inhibition of Rab11 function by a dominant-negative mutant or RNA interference blocks primary ciliogenesis. Our results suggest that Rab GTPases coordinate with each other in the regulation of vesicular trafficking during primary ciliogenesis.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Cílios/metabolismo , Endossomos/metabolismo , Quinases do Centro Germinativo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Proteínas rab de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo
17.
J Biol Chem ; 286(4): 2675-80, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21047780

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects neurons and repairs the Parkinson disease-like symptoms in a rat 6-hydroxydopamine model. We show a three-dimensional solution structure of human MANF that differs drastically from other neurotrophic factors. Remarkably, the C-terminal domain of MANF (C-MANF) is homologous to the SAP domain of Ku70, a well known inhibitor of proapoptotic Bax (Bcl-2-associated X protein). Cellular studies confirm that MANF and C-MANF protect neurons intracellularly as efficiently as Ku70.


Assuntos
Apoptose , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Doença de Parkinson Secundária/metabolismo , Proteínas/metabolismo , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Autoantígeno Ku , Fatores de Crescimento Neural/genética , Ressonância Magnética Nuclear Biomolecular , Oxidopamina/efeitos adversos , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Estrutura Terciária de Proteína , Proteínas/genética , Ratos , Homologia Estrutural de Proteína , Simpatolíticos/efeitos adversos , Simpatolíticos/farmacocinética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
J Biol Chem ; 286(32): 28276-86, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21685394

RESUMO

Primary cilia regulate polarized protein trafficking in photoreceptors, which are dynamic and highly compartmentalized sensory neurons of retina. The ciliary protein Cep290 modulates cilia formation and is frequently mutated in syndromic and non-syndromic photoreceptor degeneration. However, the underlying mechanism of associated retinopathy is unclear. Using the Cep290 mutant mouse rd16 (retinal degeneration 16), we show that Cep290-mediated photoreceptor degeneration is associated with aberrant accumulation of its novel interacting partner Rkip (Raf-1 kinase inhibitory protein). This effect is phenocopied by morpholino-mediated depletion of cep290 in zebrafish. We further demonstrate that ectopic accumulation of Rkip leads to defective cilia formation in zebrafish and cultured cells, an effect mediated by its interaction with the ciliary GTPase Rab8A. Our data suggest that Rkip prevents cilia formation and is associated with Cep290-mediated photoreceptor degeneration. Furthermore, our results indicate that preventing accumulation of Rkip could potentially ameliorate such degeneration.


Assuntos
Antígenos de Neoplasias/metabolismo , Transtornos da Motilidade Ciliar/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Degeneração Retiniana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Chlorocebus aethiops , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Células HEK293 , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
19.
Hum Mol Genet ; 19(18): 3591-8, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20631154

RESUMO

Defects in biogenesis or function(s) of primary cilia are associated with numerous inherited disorders (called ciliopathies) that may include retinal degeneration phenotype. The cilia-expressed gene RPGR (retinitis pigmentosa GTPase regulator) is mutated in patients with X-linked retinitis pigmentosa (XLRP) and encodes multiple protein isoforms with a common N-terminal domain homologous to regulator of chromosome condensation 1 (RCC1), a guanine nucleotide exchange factor (GEF) for Ran GTPase. RPGR interacts with several ciliopathy proteins, such as RPGRIP1L and CEP290; however, its physiological role in cilia-associated functions has not been delineated. Here, we report that RPGR interacts with the small GTPase RAB8A, which participates in cilia biogenesis and maintenance. We show that RPGR primarily associates with the GDP-bound form of RAB8A and stimulates GDP/GTP nucleotide exchange. Disease-causing mutations in RPGR diminish its interaction with RAB8A and reduce the GEF activity. Depletion of RPGR in hTERT-RPE1 cells interferes with ciliary localization of RAB8A and results in shorter primary cilia. Our data suggest that RPGR modulates intracellular localization and function of RAB8A. We propose that perturbation of RPGR-RAB8A interaction, at least in part, underlies the pathogenesis of photoreceptor degeneration in XLRP caused by RPGR mutations.


Assuntos
Cílios/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Cílios/genética , Cães , Proteínas do Olho/genética , Humanos , Ligação Proteica , Transporte Proteico , Retinose Pigmentar/genética
20.
Proc Natl Acad Sci U S A ; 106(7): 2429-34, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164766

RESUMO

In vertebrates the development and function of the nervous system is regulated by neurotrophic factors (NTFs). Despite extensive searches no neurotrophic factors have been found in invertebrates. However, cell ablation studies in Drosophila suggest trophic interaction between neurons and glia. Here we report the invertebrate neurotrophic factor in Drosophila, DmMANF, homologous to mammalian MANF and CDNF. DmMANF is expressed in glia and essential for maintenance of dopamine positive neurites and dopamine levels. The abolishment of both maternal and zygotic DmMANF leads to the degeneration of axonal bundles in the embryonic central nervous system and subsequent nonapoptotic cell death. The rescue experiments confirm DmMANF as a functional ortholog of the human MANF gene thus opening the window for comparative studies of this protein family with potential for the treatment of Parkinson's disease.


Assuntos
Proteínas de Drosophila/fisiologia , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Doença de Parkinson/terapia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA