Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 143(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462588

RESUMO

Extracorporeal membrane oxygenation (ECMO) has been used clinically for more than 40 years as a bridge to transplantation, with hollow-fiber membrane (HFM) oxygenators gaining in popularity due to their high gas transfer and low flow resistance. In spite of the technological advances in ECMO devices, the inevitable contact of the perfused blood with the polymer hollow-fiber gas-exchange membrane, and the subsequent thrombus formation, limits their clinical usage to only 2-4 weeks. In addition, the inhomogeneous flow in the device can further enhance thrombus formation and limit gas-transport efficiency. Endothelialization of the blood contacting surfaces of ECMO devices offers a potential solution to their inherent thrombogenicity. However, abnormal shear stresses and inhomogeneous blood flow might affect the function and activation status of the seeded endothelial cells (ECs). In this study, the blood flow through two HFM oxygenators, including the commercially available iLA® MiniLung Petite Novalung (Xenios AG, Germany) and an experimental one for the rat animal model, was modeled using computational fluid dynamics (CFD), with a view to assessing the magnitude and distribution of the wall shear stress (WSS) on the hollow fibers and flow fields in the oxygenators. This work demonstrated significant inhomogeneity in the flow dynamics of both oxygenators, with regions of high hollow-fiber WSS and regions of stagnant flow, implying a variable flow-induced stimulation on seeded ECs and possible EC activation and damage in a biohybrid oxygenator setting.


Assuntos
Oxigenadores de Membrana , Hidrodinâmica
2.
Artif Organs ; 44(12): e552-e565, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32666514

RESUMO

Endothelialization of the blood contacting surfaces of blood-contacting medical devices, such as cardiovascular prostheses or biohybrid oxygenators, represents a plausible strategy for increasing their hemocompatibility. Nevertheless, isolation and expansion of autologous endothelial cells (ECs) usually requires multiple processing steps and time to obtain sufficient cell numbers. This excludes endothelialization from application in acute situations. Off-the-shelf availability of cell-seeded biohybrid devices could be potentially facilitated by hypothermic storage. In this study, the survival of cord-blood-derived endothelial colony forming cells (ECFCs) that were seeded onto polymethylpentene (PMP) gas-exchange membranes and stored for up to 2 weeks in different commercially available and commonly used preservation media was measured. While storage at 4°C in normal growth medium (EGM-2) for 3 days resulted in massive disruption of the ECFC monolayer and a significant decline in viability, ECFC monolayers preserved in Chillprotec could recover after up to 14 days with negligible effects on their integrity and viability. ECFC monolayers preserved in Celsior, HTS-FRS, or Rokepie medium showed a significant decrease in viability after 7 days or longer periods. These results demonstrated the feasibility of hypothermic preservation of ECFC monolayers on gas-exchange membranes for up to 2 weeks, with potential application on the preservation of pre-endothelialized oxygenators and further biohybrid cardiovascular devices.


Assuntos
Técnicas de Cultura de Células/métodos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Membranas Artificiais , Refrigeração , Trombose/prevenção & controle , Células Cultivadas , Temperatura Baixa , Oxigenação por Membrana Extracorpórea/instrumentação , Estudos de Viabilidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco , Trombose/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA