Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 1): 118756, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552830

RESUMO

The evaluation of the ecotoxicological effects of the effluent after treatment with peracetic acid is relevant to help establish reference concentrations for the disinfection process and waste recovery. Therefore, the objective of this work was to evaluate the ecotoxicity of effluent from a bovine slaughterhouse treated with peracetic acid on Girardia tigrina. The toxicity bioassays for planaria were the acute test (LC50) and chronic assays: locomotion, regeneration, reproduction and fertility. The results showed that the effluent treated with peracetic acid showed less toxicity than the effluent without application of peracetic acid. The effluent after peracetic acid application showed a chronic toxic effect in the reduction of locomotor speed in all studied disinfectant concentrations (0.8, 1.6, 3.3 and 6.6 µg L-1 of peracetic acid) and a delay in the formation of G. tigrina photoreceptors at the concentration of 6.6 µg L-1 of peracetic acid. Peracetic acid concentrations of 0.8, 1.6 and 3.3 µg L-1 were not toxic for blastema regeneration, photoreceptor and auricle formation, fecundity and fertility. In addition, this study assists in defining doses of peracetic acid to be recommended in order to ensure the wastewater disinfection process without causing harm to aquatic organisms.


Assuntos
Matadouros , Desinfetantes , Ácido Peracético , Poluentes Químicos da Água , Ácido Peracético/toxicidade , Animais , Bovinos , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Desinfecção/métodos , Águas Residuárias/toxicidade
2.
Acta Trop ; 227: 106300, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979144

RESUMO

Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.


Assuntos
Febre de Chikungunya , Rimantadina , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Platina/farmacologia , Platina/uso terapêutico , Qualidade de Vida , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Replicação Viral
3.
Pharmacol Rep ; 73(3): 954-961, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33523405

RESUMO

BACKGROUND: Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV) to which there is no vaccine or effective antiviral drug treatment so far. Our study aimed to evaluate the potential anti-CHIKV activity of memantine hydrochloride (mtnH), a drug from the class of the aminoadamantanes approved for the treatment of Alzheimer´s disease, as a possible drug to be repurposed to the treatment of Chikungunya fever. METHODS: MtnH antiviral activity against CHIKV was determined by infecting BHK-21 cells with CHIKV-nanoluc, a virus carrying the marker nanoluciferase reporter, in the presence or absence of mtnH at concentrations ranging from 500 to 1.45 µM. The effective concentration of 50% inhibition (EC50) was calculated. Cell viability assay (determination of CC50) was also performed employing BHK-21 cells. Mutagenic assays were performed by the Salmonella Typhimurium/microsome assay (Ames test). RESULTS: MtnH presented a CC50 of 248.4 ± 31.9 µM and an EC50 of 32.4 ± 4 µM against CHIKV in vitro. The calculated selectivity index (SI) was 7.67. MtnH did not induce genetic mutation in Salmonella strains with or without an external metabolizing system. CONCLUSION: With the data herein presented, it is possible to hypothesize mtnH as a viable candidate to be repurposed as an anti-CHIKV drug. Clinical assays are, therefore, encouraged due to the promising in vitro results. The drug memantine hydrochloride is herein personified with a doubt: as a prior regulated drug against Alzheimer, could it follow the path against Chikungunya virus too?


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Memantina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Febre de Chikungunya/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA