Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
2.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627817

RESUMO

Experimental evolution studies have shown that weak antibiotic selective pressures (i.e., when the antibiotic concentrations are far below the minimum inhibitory concentration, MIC) can select resistant mutants, raising several unanswered questions. First, what are the lowest antibiotic concentrations at which selection for de novo resistance mutations can occur? Second, with weak antibiotic selections, which other types of adaptive mutations unrelated to the antibiotic selective pressure are concurrently enriched? Third, are the mutations selected under laboratory settings at subMIC also observed in clinical isolates? We addressed these questions using Escherichia coli populations evolving at subMICs in the presence of either of four clinically used antibiotics: fosfomycin, nitrofurantoin, tetracycline, and ciprofloxacin. Antibiotic resistance evolution was investigated at concentrations ranging from 1/4th to 1/2000th of the MIC of the susceptible strain (MICsusceptible). Our results show that evolution was rapid across all the antibiotics tested, and selection for fosfomycin- and nitrofurantoin-resistant mutants was observed at a concentration as low as 1/2000th of MICsusceptible. Several of the evolved resistant mutants showed increased growth yield and exponential growth rates, and outcompeted the susceptible ancestral strain in the absence of antibiotics as well, suggesting that adaptation to the growth environment occurred in parallel with the selection for resistance. Genomic analysis of the resistant mutants showed that several of the mutations selected under these conditions are also found in clinical isolates, demonstrating that experimental evolution at very low antibiotic levels can help in identifying novel mutations that contribute to bacterial adaptation during subMIC exposure in real-life settings.


Assuntos
Antibacterianos , Fosfomicina , Antibacterianos/farmacologia , Nitrofurantoína , Fosfomicina/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação , Farmacorresistência Bacteriana/genética
3.
Appl Microbiol Biotechnol ; 108(1): 329, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727750

RESUMO

Xylanases are key biocatalysts in the degradation of the ß-1,4-glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-ß-xylanase belonging to glycosyl hydrolase family 10 (GH10). When xyl4 was expressed in Escherichia coli BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications. KEY POINTS: • A GH10 endo-1,4-ß-xylanase (Xyl4) was isolated from a compost metagenomic library • MATLAB's in-house functions were developed to identify the xylanase-producing clones • Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis.


Assuntos
Compostagem , Endo-1,4-beta-Xilanases , Escherichia coli , Metagenômica , Filogenia , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Metagenoma , Biblioteca Gênica , Microbiologia do Solo , Xilanos/metabolismo , Clonagem Molecular , Fermentação , Expressão Gênica , Simulação de Acoplamento Molecular
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607952

RESUMO

Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700-60+50 and 850-60+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likely inhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands.


Assuntos
Ecossistema , Meio Ambiente , Atividades Humanas , Migração Humana , Agricultura , Açores , Mudança Climática , Modelos Climáticos , Fezes/química , Humanos
5.
Appl Microbiol Biotechnol ; 107(17): 5379-5401, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417976

RESUMO

The renewable, abundant , and low-cost nature of lignocellulosic biomass can play an important role in the sustainable production of bioenergy and several added-value bioproducts, thus providing alternative solutions to counteract the global energetic and industrial demands. The efficient conversion of lignocellulosic biomass greatly relies on the catalytic activity of carbohydrate-active enzymes (CAZymes). Finding novel and robust biocatalysts, capable of being active under harsh industrial conditions, is thus imperative to achieve an economically feasible process. In this study, thermophilic compost samples from three Portuguese companies were collected, and their metagenomic DNA was extracted and sequenced through shotgun sequencing. A novel multi-step bioinformatic pipeline was developed to find CAZymes and characterize the taxonomic and functional profiles of the microbial communities, using both reads and metagenome-assembled genomes (MAGs) as input. The samples' microbiome was dominated by bacteria, where the classes Gammaproteobacteria, Alphaproteobacteria, and Balneolia stood out for their higher abundance, indicating that the degradation of compost biomass is mainly driven by bacterial enzymatic activity. Furthermore, the functional studies revealed that our samples are a rich reservoir of glycoside hydrolases (GH), particularly of GH5 and GH9 cellulases, and GH3 oligosaccharide-degrading enzymes. We further constructed metagenomic fosmid libraries with the compost DNA and demonstrated that a great number of clones exhibited ß-glucosidase activity. The comparison of our samples with others from the literature showed that, independently of the composition and process conditions, composting is an excellent source of lignocellulose-degrading enzymes. To the best of our knowledge, this is the first comparative study on the CAZyme abundance and taxonomic/functional profiles of Portuguese compost samples. KEY POINTS: • Sequence- and function-based metagenomics were used to find CAZymes in compost samples. • Thermophilic composts proved to be rich in bacterial GH3, GH5, and GH9 enzymes. • Compost-derived fosmid libraries are enriched in clones with ß-glucosidase activity.


Assuntos
Celulases , Compostagem , Microbiota , Metagenômica , Lignina/metabolismo , Carboidratos , Bactérias/metabolismo , Celulases/metabolismo
6.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108380

RESUMO

Understanding the physiological and molecular adjustments occurring during tree stress response is of great importance for forest management and breeding programs. Somatic embryogenesis has been used as a model system to analyze various processes occurring during embryo development, including stress response mechanisms. In addition, "priming" plants with heat stress during somatic embryogenesis seems to favor the acquisition of plant resilience to extreme temperature conditions. In this sense, Pinus halepensis somatic embryogenesis was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) and its effects on the proteome and the relative concentration of soluble sugars, sugar alcohols and amino acids of the embryonal masses obtained were assessed. Heat severely affected the production of proteins, and 27 proteins related to heat stress response were identified; the majority of the proteins with increased amounts in embryonal masses induced at higher temperatures consisted of enzymes involved in the regulation of metabolism (glycolysis, the tricarboxylic acid cycle, amino acid biosynthesis and flavonoids formation), DNA binding, cell division, transcription regulation and the life-cycle of proteins. Finally, significant differences in the concentrations of sucrose and amino acids, such as glutamine, glycine and cysteine, were found.


Assuntos
Pinus , Pinus/genética , Proteômica , Melhoramento Vegetal , Resposta ao Choque Térmico , Aminoácidos/metabolismo
7.
Apoptosis ; 27(5-6): 368-381, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35362903

RESUMO

Proteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events. However, when in its inactive form, Bax is largely cytosolic or weakly bound to mitochondria. Given the central role of Bax in apoptosis, studies aiming to understand its regulation are of paramount importance towards its exploitation as a therapeutic target. So far, studies taking advantage of heterologous expression of human Bax in yeast to unveil regulation of Bax activation have relied on the use of artificial mutated or mitochondrial tagged Bax for its activation, rather than the wild type Bax (Bax α). Here, we found that cell death could be triggered in yeast cells heterologoulsy expressing Bax α with concentrations of acetic acid that are not lethal to wild type cells. This was associated with Bax mitochondrial translocation and cyt c release, closely resembling the natural Bax function in the cellular context. This regulated cell death process was reverted by co-expression with Bcl-xL, but not with Bcl-xLΔC, and in the absence of Rim11p, the yeast ortholog of mammalian GSK3ß. This novel system mimics human Bax α regulation by GSK3ß and can therefore be used as a platform to uncover novel Bax regulators and explore its therapeutic modulation.


Assuntos
Citocromos c , Saccharomyces cerevisiae , Ácido Acético , Animais , Apoptose/genética , Proteínas de Transporte , Citocromos c/genética , Citocromos c/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628639

RESUMO

Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular ß-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.


Assuntos
Senescência Celular , Fibroblastos , Envelhecimento , Animais , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética , Mamíferos
9.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008948

RESUMO

Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.


Assuntos
Biomarcadores , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/metabolismo , Proteínas Nucleares/metabolismo
10.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163242

RESUMO

Under the global warming scenario, obtaining plant material with improved tolerance to abiotic stresses is a challenge for afforestation programs. In this work, maritime pine (Pinus pinaster Aiton) plants were produced from somatic embryos matured at different temperatures (18, 23, or 28 °C, named after M18, M23, and M28, respectively) and after 2 years in the greenhouse a heat stress treatment (45 °C for 3 h/day for 10 days) was applied. Temperature variation during embryo development resulted in altered phenotypes (leaf histology, proline content, photosynthetic rates, and hormone profile) before and after stress. The thickness of chlorenchyma was initially larger in M28 plants, but was significantly reduced after heat stress, while increased in M18 plants. Irrespective of their origin, when these plants were subjected to a heat treatment, relative water content (RWC) and photosynthetic carbon assimilation rates were not significantly affected, although M18 plants increased net photosynthesis rate after 10 days recovery (tR). M18 plants showed proline contents that increased dramatically (2.4-fold) when subjected to heat stress, while proline contents remained unaffected in M23 and M28 plants. Heat stress significantly increased abscisic acid (ABA) content in the needles of maritime pine plants (1.4-, 3.6- and 1.9-fold in M18, M23, and M28 plants, respectively), while indole-3-acetic acid content only increased in needles from M23 plants. After the heat treatment, the total cytokinin contents of needles decreased significantly, particularly in M18 and M28 plants, although levels of active forms (cytokinin bases) did not change in M18 plants. In conclusion, our results suggest that maturation of maritime pine somatic embryos at lower temperature resulted in plants with better performance when subjected to subsequent high temperature stress, as demonstrated by faster and higher proline increase, lower increases in ABA levels, no reduction in active cytokinin, and a better net photosynthesis rate recovery.


Assuntos
Resposta ao Choque Térmico/genética , Pinus/crescimento & desenvolvimento , Pinus/genética , Agricultura/métodos , Secas , Resposta ao Choque Térmico/fisiologia , Temperatura Alta/efeitos adversos , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Temperatura
11.
Med Res Rev ; 41(4): 1927-1964, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33483985

RESUMO

The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Descoberta de Drogas , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
Euro Surveill ; 26(46)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34794534

RESUMO

We present a European Union/European Economic Area-wide overview of the changes in consumption of antibacterials for systemic use (ATC J01) in the community between 2019 and 2020 as reported to the European Surveillance of Antimicrobial Consumption Network. Overall antibiotic consumption decreased by 18.3% between 2019 and 2020, the largest annual decrease in the network's two-decade history. We observed a strong association between the level of community antibiotic consumption in 2019 and the size of the decrease between 2019 and 2020.


Assuntos
Antibacterianos , COVID-19 , Antibacterianos/uso terapêutico , Uso de Medicamentos , Europa (Continente)/epidemiologia , União Europeia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
13.
Artigo em Inglês | MEDLINE | ID: mdl-32540973

RESUMO

Most microbes live in spatially confined subpopulations. Under spatial structure conditions, the efficacy of natural selection is often reduced (relative to homogeneous conditions) due to the increased importance of genetic drift and local competition. Additionally, under spatial structure conditions, the fittest genotype may not always be the one with better access to the heterogeneous distribution of nutrients. The effect of radial expansion may be particularly relevant for the elimination of antibiotic resistance mutations, as their dynamics within bacterial populations are strongly dependent on their growth rate. Here, we use Escherichia coli to systematically compare the allele frequency of streptomycin, rifampin, and fluoroquinolone single and double resistance mutants after 24 h of coexistence with a susceptible strain under radial expansion (local competition) and homogeneous (global competition) conditions. We show that there is a significant effect of structure on the maintenance of double resistances which is not observed for single resistances. Radial expansion also facilitates the persistence of double resistances when competing against their single counterparts. Importantly, we found that spatial structure reduces the rate of compensation of the double mutant RpsLK43T RpoBH526Y and that a strongly compensatory mutation in homogeneous conditions becomes deleterious under spatial structure conditions. Overall, our results unravel the importance of spatial structure for facilitating the maintenance and accumulation of multiple resistances over time and for determining the identity of compensatory mutations.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli , Fluoroquinolonas/farmacologia , Mutação , Proteína S9 Ribossômica , Rifampina/farmacologia , Estreptomicina/farmacologia
15.
J Nat Prod ; 82(5): 1240-1249, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30964667

RESUMO

Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 µM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-ß-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Endocitose/efeitos dos fármacos , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , Saccharomyces cerevisiae/metabolismo , Disponibilidade Biológica , Portadores de Fármacos , Composição de Medicamentos , Estabilidade de Medicamentos , Lipossomos , Mutação , Nanoestruturas , Saccharomyces cerevisiae/genética
16.
Microsc Microanal ; 25(1): 221-228, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30246678

RESUMO

TorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE). Interestingly, mutations in the TOR1A gene (the gene encoding torsinA) are associated with DYT1 dystonia and with the preferential localization of mutated torsinA at the NE, where it is associated with lamina-associated polypeptide 1. A bioinformatics study of the torsinA interactome revealed reproductive processes to be highly relevant, as proteins in this class were found to interact with the former. Interestingly, the torsin protein family had never been previously described to be associated with the mammalian spermatogenic process. Histological staining of torsinA in human testis tissue revealed a granular cytoplasmic localization in mid- and late spermatocytes. We further sought to understand this newly discovered expression of torsinA in the meiotic phase of human spermatogenesis by studying its specific subcellular distribution. TorsinA is not present in the ER as commonly described. The proposal that torsinA might relocate to the pro-acrosomal vesicles in the Golgi apparatus is discussed.


Assuntos
Chaperonas Moleculares/metabolismo , Transporte Proteico , Espermatogênese/fisiologia , Idoso de 80 Anos ou mais , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Masculino , Chaperonas Moleculares/genética , Mutação , Membrana Nuclear/metabolismo , Neoplasias da Próstata , Testículo/patologia
17.
Am J Hematol ; 93(11): 1411-1419, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30132969

RESUMO

In order to identify very early prognostic factors that can provide insights into subsequent clinical complications, we performed a comprehensive longitudinal multi-center cohort study on 57 infants with sickle cell anemia (55 SS; 2 Sß°) during the first 2 years of life (ClinicalTrials.gov: NCT01207037). Time to first occurrence of a severe clinical event-acute splenic sequestration (ASS), vaso-occlusive (VOC) event requiring hospitalization, transfusion requirement, conditional/ abnormal cerebral velocities, or death-was used as a composite endpoint. Infants were recruited at a mean age of 4.4 ±1 months. Median follow-up was 19.4 months. During the study period, 38.6% of infants experienced ≥1 severe event: 14% ASS, 22.8% ≥ 1 VOC (median age: 13.4 and 12.8 months, respectively) and 33.3% required transfusion. Of note, 77% of the cohort was hospitalized, with febrile illness being the leading cause for admission. Univariate analysis of various biomarkers measured at enrollment showed that fetal hemoglobin (HbF) was the strongest prognostic factor of subsequent severe outcome. Other biomarkers measured at enrolment including absolute neutrophil or reticulocyte counts, expression of erythroid adhesion markers, % of dense red cells, cellular deformability or ϒ-globin genetic variants, failed to be associated with severe clinical outcome. Multivariate analysis demonstrated that higher Hb concentration and HbF level are two independent protective factors (adjusted HRs (95% CI) 0.27 (0.11-0.73) and 0.16 (0.06-0.43), respectively). These findings imply that early measurement of HbF and Hb levels can identify infants at high risk for subsequent severe complications, who might maximally benefit from early disease modifying treatments.


Assuntos
Anemia Falciforme/diagnóstico , Índice de Gravidade de Doença , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Biomarcadores/análise , Transfusão de Sangue , Estudos de Coortes , Feminino , Hemoglobina Fetal/análise , Hemoglobinas/análise , Hospitalização , Humanos , Lactente , Estudos Longitudinais , Masculino , Prognóstico
18.
Biophys J ; 112(9): 1863-1873, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494957

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Serotonina/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Membrana Celular/química , Eritrócitos/química , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peroxidação de Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Oxirredução , Serotonina/administração & dosagem , Serotonina/química
19.
Eur J Immunol ; 46(1): 147-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26426881

RESUMO

Globotriaosylceramide (Gb3) is a glycosphingolipid present in cellular membranes that progressively accumulates in Fabry disease. Invariant Natural Killer T (iNKT) cells are a population of lipid-specific T cells that are phenotypically and functionally altered in Fabry disease. The mechanisms responsible for the iNKT-cell alterations in Fabry disease are not well understood. Here, we analyzed the effect of Gb3 on CD1d-mediated iNKT-cell activation in vitro using human cells and in vivo in the mouse model. We found that Gb3 competes with endogenous and exogenous antigens for CD1d binding, thereby reducing the activation of iNKT cells. This effect was exerted by a reduction in the amount of stimulatory CD1d:α-GalCer complexes in the presence of Gb3 as demonstrated by using an mAb specific for the complex. We also found that administration of Gb3 delivered to the same APC as α-GalCer, induces reduced iNKT-cell activation in vivo. This work highlights the complexity of iNKT-cell activation and the importance of nonantigenic glycosphingolipids in the modulation of this process.


Assuntos
Antígenos CD1d/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Triexosilceramidas/imunologia , Animais , Modelos Animais de Doenças , Doença de Fabry/imunologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL
20.
Haematologica ; 102(7): 1161-1172, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28385784

RESUMO

Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients.


Assuntos
Anemia Falciforme/metabolismo , Adesão Celular , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Receptor de Endotelina B/metabolismo , Adolescente , Anemia Falciforme/sangue , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Endotelina-1/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Contagem de Leucócitos , Migração e Rolagem de Leucócitos , Antígeno de Macrófago 1/metabolismo , Camundongos , Ativação de Neutrófilo , Neutrófilos/imunologia , Receptor de Endotelina A/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA