Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808276

RESUMO

This paper presents a parallel motion planner for mobile robots and autonomous vehicles based on lattices created in the sensor space of planar range finders. The planner is able to compute paths in a few milliseconds, thus allowing obstacle avoidance in real time. The proposed sensor-space lattice (SSLAT) motion planner uses a lattice to tessellate the area covered by the sensor and to rapidly compute collision-free paths in the robot surroundings by optimizing a cost function. The cost function guides the vehicle to follow a vector field, which encodes the desired vehicle path. We evaluated our method in challenging cluttered static environments, such as warehouses and forests, and in the presence of moving obstacles, both in simulations and real experiments. In these experiments, we show that our algorithm performs collision checking and path planning faster than baseline methods. Since the method can have sequential or parallel implementations, we also compare the two versions of SSLAT and show that the run time for its parallel implementation, which is independent of the number and shape of the obstacles found in the environment, provides a speedup greater than 25.

2.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36081008

RESUMO

Many aerial robotic applications require the ability to land on moving platforms, such as delivery trucks and marine research boats. We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. Unlike many existing methods for landing on fast-moving platforms, this method does not rely on additional external setups, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only the minimal set of hardware and localization sensors. The videos and source codes are also provided.

3.
Sensors (Basel) ; 19(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547079

RESUMO

Autonomous navigation of unmanned vehicles in forests is a challenging task. In such environments, due to the canopies of the trees, information from Global Navigation Satellite Systems (GNSS) can be degraded or even unavailable. Also, because of the large number of obstacles, a previous detailed map of the environment is not practical. In this paper, we solve the complete navigation problem of an aerial robot in a sparse forest, where there is enough space for the flight and the GNSS signals can be sporadically detected. For localization, we propose a state estimator that merges information from GNSS, Attitude and Heading Reference Systems (AHRS), and odometry based on Light Detection and Ranging (LiDAR) sensors. In our LiDAR-based odometry solution, the trunks of the trees are used in a feature-based scan matching algorithm to estimate the relative movement of the vehicle. Our method employs a robust adaptive fusion algorithm based on the unscented Kalman filter. For motion control, we adopt a strategy that integrates a vector field, used to impose the main direction of the movement for the robot, with an optimal probabilistic planner, which is responsible for obstacle avoidance. Experiments with a quadrotor equipped with a planar LiDAR in an actual forest environment is used to illustrate the effectiveness of our approach.

4.
Sensors (Basel) ; 19(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126032

RESUMO

This paper presents the Quaternion-based Robust Adaptive Unscented Kalman Filter (QRAUKF) for attitude estimation. The proposed methodology modifies and extends the standard UKF equations to consistently accommodate the non-Euclidean algebra of unit quaternions and to add robustness to fast and slow variations in the measurement uncertainty. To deal with slow time-varying perturbations in the sensors, an adaptive strategy based on covariance matching that tunes the measurement covariance matrix online is used. Additionally, an outlier detector algorithm is adopted to identify abrupt changes in the UKF innovation, thus rejecting fast perturbations. Adaptation and outlier detection make the proposed algorithm robust to fast and slow perturbations such as external magnetic field interference and linear accelerations. Comparative experimental results that use an industrial manipulator robot as ground truth suggest that our method overcomes a trusted commercial solution and other widely used open source algorithms found in the literature.

5.
Sensors (Basel) ; 15(11): 27783-803, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26540055

RESUMO

This paper presents a solution for the problem of minimum time coverage of ground areas using a group of unmanned air vehicles (UAVs) equipped with image sensors. The solution is divided into two parts: (i) the task modeling as a graph whose vertices are geographic coordinates determined in such a way that a single UAV would cover the area in minimum time; and (ii) the solution of a mixed integer linear programming problem, formulated according to the graph variables defined in the first part, to route the team of UAVs over the area. The main contribution of the proposed methodology, when compared with the traditional vehicle routing problem's (VRP) solutions, is the fact that our method solves some practical problems only encountered during the execution of the task with actual UAVs. In this line, one of the main contributions of the paper is that the number of UAVs used to cover the area is automatically selected by solving the optimization problem. The number of UAVs is influenced by the vehicles' maximum flight time and by the setup time, which is the time needed to prepare and launch a UAV. To illustrate the methodology, the paper presents experimental results obtained with two hand-launched, fixed-wing UAVs.

6.
Front Robot AI ; 10: 1149080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033672

RESUMO

This paper presents a cooperative, multi-robot solution for searching, excavating, and transporting mineral resources on the Moon. Our work was developed in the context of the Space Robotics Challenge Phase 2 (SRCP2), which was part of the NASA Centennial Challenges and was motivated by the current NASA Artemis program, a flagship initiative that intends to establish a long-term human presence on the Moon. In the SRCP2 a group of simulated mobile robots was tasked with reporting volatile locations within a realistic lunar simulation environment, and excavating and transporting these resources to target locations in such an environment. In this paper, we describe our solution to the SRCP2 competition that includes our strategies for rover mobility hazard estimation (e.g. slippage level, stuck status), immobility recovery, rover-to-rover, and rover-to-infrastructure docking, rover coordination and cooperation, and cooperative task planning and autonomy. Our solution was able to successfully complete all tasks required by the challenge, granting our team sixth place among all participants of the challenge. Our results demonstrate the potential of using autonomous robots for autonomous in-situ resource utilization (ISRU) on the Moon. Our results also highlight the effectiveness of realistic simulation environments for testing and validating robot autonomy and coordination algorithms. The successful completion of the SRCP2 challenge using our solution demonstrates the potential of cooperative, multi-robot systems for resource utilization on the Moon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA