Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14576-14586, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752849

RESUMO

We present a case study on how to improve an existing metal-free catalyst for a particularly difficult reaction, namely, the Corey-Bakshi-Shibata (CBS) reduction of butanone, which constitutes the classic and prototypical challenge of being able to differentiate a methyl from an ethyl group. As there are no known strategies on how to address this challenge, we leveraged the power of machine learning by constructing a realistic (for a typical laboratory) small, albeit high-quality, data set of about 100 reactions (run in triplicate) that we used to train a model in combination with a key-intermediate graph (of substrate and catalyst) to predict the differences in Gibbs activation energies ΔΔG‡ of the enantiomeric reaction paths. With the help of this model, we were able to select and subsequently screen a small selection of catalysts and increase the selectivity for the CBS reduction of butanone to 80% enantiomeric excess (ee), the highest possible value achieved to date for this substrate with a metal-free catalyst, thereby also exceeding the best available enzymatic systems (64% ee) and the selectivity with Corey's original catalyst (60% ee). This translates into a >50% improvement in relative ΔG‡ from 0.9 to 1.4 kcal mol-1. We underscore the transformative potential of machine learning in accelerating catalyst design because we rely on a manageable small data set and a key-intermediate graph representing a combination of catalyst and substrate graphs in lieu of a transition-state model. Our results highlight the synergy of synthetic chemistry and data-centric approaches and provide a blueprint for future catalyst optimization.

2.
Mar Pollut Bull ; 200: 116050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262213

RESUMO

Sponges are not routinely employed as metal bioindicators in Brazil. In this sense, this study reports baseline metal and metalloid concentrations, determined by inductively coupled plasma mass spectrometry, for two Demospongiae sponge species, Hymeniacidon heliophila and Desmapsamma anchorata, sampled from two Southeastern Brazil areas. Sponges from Ilha Grande Bay, an Environmental Protection Area, exhibited higher Al, As, Cd, Co, Cr, Fe, and Ni levels compared to Vermelha Beach, a metropolitan area in the Rio de Janeiro city. Several strong correlations were noted between elemental pairs, indicating common contamination sources and/or similar metabolic detoxification routes. Comparisons of the means determined herein for each study site to other reports indicate mostly lower Ag, As, Co, Cd, and Cu levels, while Al levels were higher than other studies, and Cr, Ni, and Fe were within reported ranges. These baseline data further knowledge on metal pollution in Desmspongiae members, which are still limited.


Assuntos
Metaloides , Metais Pesados , Poríferos , Poluentes Químicos da Água , Animais , Metaloides/análise , Brasil , Cádmio/análise , Poríferos/metabolismo , Metais/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA