Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(W1): W104-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25916842

RESUMO

IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization.


Assuntos
Genoma Arqueal , Genoma Bacteriano , Ilhas Genômicas , Software , Gráficos por Computador , Resistência Microbiana a Medicamentos/genética , Genômica , Internet , Anotação de Sequência Molecular , Fatores de Virulência/genética
2.
J Heart Lung Transplant ; 37(9): 1047-1059, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173823

RESUMO

BACKGROUND: Mycophenolate mofetil (MMF) is commonly prescribed after transplantation and has major advantages over other immunosuppressive drugs, but frequent gastrointestinal (GI) side-effects limit its use. The mechanism(s) underlying MMF-related GI toxicity have yet to be elucidated. METHODS: To investigate MMF-related GI toxicity, experimental mice were fed chow containing MMF (0.563%) and multiple indices of toxicity, including weight loss and colonic inflammation, were measured. Changes in intestinal microbial composition were detected using 16S rRNA Illumina sequencing, and downstream PICRUSt analysis was used to predict metagenomic pathways involved. Germ-free (GF) mice and mice treated with orally administered broad-spectrum antibiotics (ABX) were utilized to interrogate the importance of the microbiota in MMF-induced GI toxicity. RESULTS: Mice treated with MMF exhibited significant weight loss, related to loss of body fat and muscle, and marked colonic inflammation. MMF exposure was associated with changes in gut microbial composition, as demonstrated by a loss of overall diversity, expansion of Proteobacteria (specifically Escherichia/Shigella), and enrichment of genes involved in lipopolysaccharide (LPS) biosynthesis, which paralleled increased levels of LPS in the feces and serum. MMF-related GI toxicity was dependent on the intestinal microbiota, as MMF did not induce weight loss or colonic inflammation in GF mice. Furthermore, ABX prevented and reversed MMF-induced weight loss and colonic inflammation. CONCLUSIONS: An intact intestinal microbiota is required to initiate and sustain the GI toxicity of MMF. MMF treatment causes dynamic changes in the composition of the intestinal microbiota that may be a targetable driver of the GI side-effects of MMF.


Assuntos
Modelos Animais de Doenças , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Imunossupressores/toxicidade , Microbiota/efeitos dos fármacos , Ácido Micofenólico/toxicidade , Animais , Colo/efeitos dos fármacos , Colo/microbiologia , Vida Livre de Germes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos , Microbiota/imunologia , Ácido Micofenólico/uso terapêutico , Proteobactérias , RNA Ribossômico 16S , Análise de Sequência de RNA , Redução de Peso/efeitos dos fármacos
3.
Front Microbiol ; 6: 1036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483767

RESUMO

The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA