Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Vasc Res ; 57(6): 325-340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32777783

RESUMO

We have shown that both insulin and resveratrol (RSV) decrease neointimal hyperplasia in chow-fed rodents via mechanisms that are in part overlapping and involve the activation of endothelial nitric oxide synthase (eNOS). However, this vasculoprotective effect of insulin is abolished in high-fat-fed insulin-resistant rats. Since RSV, in addition to increasing insulin sensitivity, can activate eNOS via pathways that are independent of insulin signaling, such as the activation of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), we speculated that unlike insulin, the vasculoprotective effect of RSV would be retained in high-fat-fed rats. We found that high-fat feeding decreased insulin sensitivity and increased neointimal area and that RSV improved insulin sensitivity (p < 0.05) and decreased neointimal area in high-fat-fed rats (p < 0.05). We investigated the role of SIRT1 in the effect of RSV using two genetic mouse models. We found that RSV decreased neointimal area in high-fat-fed wild-type mice (p < 0.05), an effect that was retained in mice with catalytically inactive SIRT1 (p < 0.05) and in heterozygous SIRT1-null mice. In contrast, the effect of RSV was abolished in AMKPα2-null mice. Thus, RSV decreased neointimal hyperplasia after arterial injury in both high-fat-fed rats and mice, an effect likely not mediated by SIRT1 but by AMPKα2.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lesões das Artérias Carótidas/tratamento farmacológico , Artéria Carótida Primitiva/efeitos dos fármacos , Dieta Hiperlipídica , Artéria Femoral/efeitos dos fármacos , Neointima , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Lesões do Sistema Vascular/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Animais , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Modelos Animais de Doenças , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Resistência à Insulina , Camundongos Knockout , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/genética , Lesões do Sistema Vascular/enzimologia , Lesões do Sistema Vascular/patologia
2.
J Physiol ; 597(16): 4175-4192, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31240717

RESUMO

KEY POINTS: Maternal resveratrol (RESV) administration in gestational diabetes (GDM) restored normoglycaemia and insulin secretion. GDM-induced obesity was prevented in male GDM+RESV offspring but not in females. GDM+RESV offspring exhibited improved glucose tolerance and insulin sensitivity. GDM+RESV restored hepatic glucose homeostasis in offspring. Glucose-stimulated insulin secretion was enhanced in GDM+RESV offspring. ABSTRACT: Gestational diabetes (GDM), the most common complication of pregnancy, is associated with adverse metabolic health outcomes in offspring. Using a rat model of diet-induced GDM, we investigated whether maternal resveratrol (RESV) supplementation (147 mg kg-1  day-1 ) in the third week of pregnancy could improve maternal glycaemia and protect the offspring from developing metabolic dysfunction. Female Sprague-Dawley rats consumed a high-fat and sucrose (HFS) diet to induce GDM. Lean controls consumed a low-fat (LF) diet. In the third trimester, when maternal hyperglycaemia was observed, the HFS diet was supplemented with RESV. At weaning, offspring were randomly assigned a LF or HFS diet until 15 weeks of age. In pregnant dams, RESV restored glucose tolerance, normoglycaemia and improved insulin secretion. At 15 weeks of age, GDM+RESV-HFS male offspring were less obese than the GDM-HFS offspring. By contrast, the female GDM+RESV-HFS offspring were similarly as obese as the GDM-HFS group. Hepatic steatosis, insulin resistance, glucose intolerance and dysregulated gluconeogenesis were observed in the male GDM offspring and were attenuated in the offspring of GDM+RESV dams. The dysregulation of several metabolic genes (e.g. ppara, lpl, pepck and g6p) in the livers of GDM offspring was attenuated in the GDM+RESV offspring group. Glucose stimulated insulin secretion was also improved in the islets from offspring of GDM+RESV dams. Thus, maternal RESV supplementation during the third trimester of pregnancy and lactation induced several beneficial metabolic health outcomes for both mothers and offspring. Therefore, RESV could be an alternative to current GDM treatments.


Assuntos
Diabetes Gestacional/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Intolerância à Glucose/prevenção & controle , Ilhotas Pancreáticas/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Diabetes Gestacional/induzido quimicamente , Feminino , Glucose/metabolismo , Homeostase , Ilhotas Pancreáticas/fisiopatologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Resveratrol/administração & dosagem , Fatores Sexuais
3.
Biochim Biophys Acta ; 1862(11): 2137-2146, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27555296

RESUMO

Fetal exposure to gestational diabetes mellitus (GDM) is associated with a higher risk of youth-onset insulin resistance and type 2 diabetes. We have previously shown that the rat offspring of GDM dams are insulin resistant when compared to the offspring of lean dams. Since inflammation influences insulin sensitivity, we examined the impact of fetal exposure to GDM on inflammatory responses in the offspring. In rats, we compared inflammatory activity in newborn pups as well as 16week-old young-adult offspring from lean control dams with offspring from high fat and sucrose diet (HFS)-induced GDM dams. To determine whether there are additive effects of exposure to GDM and post-weaning diets, offspring of lean and GDM dams were fed either low fat or HFS diets until 16weeks of age. Plasma levels of interleukin(IL)-1ß were elevated in the offspring of GDM dams. To determine whether this was related to immune reactivity, spleen cells from both the newborn and 16week-old offspring were isolated and reactivity to the toll-like receptor activators, pam3CSK4 and lipopolysaccharides were measured over a 72h timeframe. Spleen cells of GDM dams exhibited sustained stimulation of interleukin(IL)-1ß and IL-10 production, whereas IL-1ß and IL-10 synthesis diminished over time in spleen cells from the offspring of lean dams. Additive effects of GDM exposure and post-weaning HFS diet were not observed, suggesting the effects of GDM on cytokine production are independent of the post-weaning diet. Thus, we conclude that exposure to GDM in utero may condition the immune reactivity of spleen cells.

4.
J Neuroinflammation ; 14(1): 80, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388927

RESUMO

BACKGROUND: Birth cohort studies link gestational diabetes mellitus (GDM) with impaired cognitive performance in the offspring. However, the mechanisms involved are unknown. We tested the hypothesis that obesity-associated GDM induces chronic neuroinflammation and disturbs the development of neuronal circuitry resulting in impaired cognitive abilities in the offspring. METHODS: In rats, GDM was induced by feeding dams a diet high in sucrose and fatty acids. Brains of neonatal (E20) and young adult (15-week-old) offspring of GDM and lean dams were analyzed by immunohistochemistry, cytokine assay, and western blotting. Young adult offspring of GDM and lean dams went also through cognitive assessment. Cultured microglial responses to elevated glucose and/or fatty acids levels were analyzed. RESULTS: In rats, impaired recognition memory was observed in the offspring of GDM dams. GDM exposure combined with a postnatal high-fat and sucrose diet resulted in atypical inattentive behavior in the offspring. These cognitive changes correlated with reduced density and derangement of Cornu Ammonis 1 pyramidal neuronal layer, decreased hippocampal synaptic integrity, increased neuroinflammatory status, and reduced expression of CX3CR1, the microglial fractalkine receptor regulating microglial pro-inflammatory responses and synaptic pruning. Primary microglial cultures that were exposed to high concentrations of glucose and/or palmitate were transformed into an activated, amoeboid morphology with increased nitric oxide and superoxide production, and altered their cytokine release profile. CONCLUSIONS: These findings demonstrate that GDM stimulates microglial activation and chronic inflammatory responses in the brain of the offspring that persist into young adulthood. Reactive gliosis correlates positively with hippocampal synaptic decline and cognitive impairments. The elevated pro-inflammatory cytokine expression at the critical period of hippocampal synaptic maturation suggests that neuroinflammation might drive the synaptic and cognitive decline in the offspring of GDM dams. The importance of microglia in this process is supported by the reduced Cx3CR1 expression as an indication of the loss of microglial control of inflammatory responses and phagocytosis and synaptic pruning in GDM offspring.


Assuntos
Cognição/fisiologia , Diabetes Gestacional/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Células Cultivadas , Diabetes Gestacional/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Feminino , Hipocampo/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
5.
J Physiol ; 593(14): 3181-97, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25922055

RESUMO

Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring.


Assuntos
Diabetes Gestacional/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Metaboloma , Obesidade/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Diabetes Gestacional/etiologia , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/metabolismo , Fígado Gorduroso/etiologia , Feminino , Metabolismo dos Lipídeos , Obesidade/etiologia , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidiletanolaminas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley , Sacarose/toxicidade
6.
Biochem Cell Biol ; 93(5): 438-51, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-25673017

RESUMO

The incidence of obesity and type 2 diabetes mellitus have risen across the world during the past few decades and has also reached an alarming level among children. In addition, women are currently more likely than ever to enter pregnancy obese. As a result, the incidence of gestational diabetes mellitus is also on the rise. While diet and lifestyle contribute to these trends, population health data show that maternal obesity and diabetes during pregnancy during critical stages of development are major factors that contribute to the development of chronic disease in adolescent and adult offspring. Fetal programming of metabolic function, through physiological and (or) epigenetic mechanisms, may also have an intergenerational effect, and as a result may perpetuate metabolic disorders in the next generation. In this review, we summarize the existing literature that characterizes how maternal obesity and gestational diabetes mellitus contribute to metabolic and cardiovascular disorders in the offspring. In particular, we focus on animal studies that investigate the molecular mechanisms that are programmed by the gestational environment and lead to disease phenotypes in the offspring. We also review interventional studies that prevent disease with a developmental origin in the offspring.


Assuntos
Doenças Cardiovasculares/metabolismo , Diabetes Gestacional/metabolismo , Obesidade/metabolismo , Hipernutrição/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Humanos , Gravidez
7.
Biochim Biophys Acta ; 1832(10): 1723-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707558

RESUMO

Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1-AMPK-eNOS signaling axis.


Assuntos
Cardiomegalia/prevenção & controle , Hipertensão/prevenção & controle , Estilbenos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Ratos , Resveratrol
8.
Am J Physiol Heart Circ Physiol ; 304(12): H1733-42, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23604708

RESUMO

Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P < 0.05) mean arterial pressure than SHR-C (148 ± 3 vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P < 0.05) in SHR-HF vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P < 0.05). Phosphorylation of eNOSSer1177 increased (P < 0.05) in arteries from SHR-HF vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P < 0.05) in SHR-HF vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P < 0.05) phosphorylation of AktSer473 and S6 in heart and gastrocnemius similarly in SHR-C vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.


Assuntos
Pressão Sanguínea , Dieta com Restrição de Carboidratos , Dieta Hiperlipídica , Hipertensão/dietoterapia , Resistência à Insulina , Animais , Aorta/citologia , Aorta/fisiologia , Glicemia , Cardiomegalia/dietoterapia , Endotélio Vascular/metabolismo , Insulina/sangue , Artérias Mesentéricas/citologia , Artérias Mesentéricas/fisiologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Ratos Endogâmicos SHR , Ratos Wistar , Vasodilatação
9.
Metabolism ; 68: 108-118, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28183442

RESUMO

OBJECTIVE: Our laboratory has shown that insulin's effect to decrease neointimal thickness after arterial injury is greatly diminished in insulin resistant conditions. Thus, in these conditions, a better alternative to insulin could be to use an insulin sensitizing agent. Metformin, the most commonly prescribed insulin sensitizer, has a cardiovascular protective role. Therefore, the objective of this study was to investigate the potential benefit of metformin on neointimal area after arterial injury in a rat model of restenosis. METHODS: Rats fed with either normal or high fat diet and treated with or without oral metformin (420mg/kg daily) underwent carotid balloon injury. Effects of metformin on clamp-determined insulin sensitivity, vessel AMPK (AMP-activated protein kinase) phosphorylation (activation marker) and neointimal area were evaluated. RESULTS: Metformin increased insulin sensitivity, but did not affect neointimal thickness in either the normal fat or high fat diet-fed rats. Furthermore, metformin activated AMPK in uninjured but not in injured vessels. Similarly, 10mmol/L metformin inhibited proliferation and activated AMPK in smooth muscle cells of uninjured but not injured vessels, whereas 2mmol/L metformin did not have any effect. CONCLUSION: In rats, metformin does not decrease neointimal growth after arterial injury, despite increasing whole body insulin sensitivity.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Espessura Intima-Media Carotídea , Estenose das Carótidas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Resistência à Insulina , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Pressão Sanguínea , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Dilatação , Técnica Clamp de Glucose , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Atherosclerosis ; 241(1): 111-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25974101

RESUMO

In vitro, insulin has mitogenic effects on vascular smooth muscle cells (VSMC) but also has protective effects on endothelial cells by stimulating nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) expression. Furthermore, NOS inhibition attenuates the effect of insulin to inhibit VSMC migration in vitro. Using an in vivo model, we have previously shown that insulin decreases neointimal growth and cell migration and increases re-endothelialization after arterial injury in normal rats. Since insulin can stimulate NOS, and NO can decrease neointimal growth, we hypothesized that NOS, and more specifically eNOS was required for the effects of insulin in vivo. Rats were given subcutaneous insulin implants (3 U/day) alone or with the NOS inhibitor l-NAME (2 mg kg(-1) day(-1)) 3 days before arterial (carotid or aortic) balloon catheter injury. Insulin decreased both neointimal area (P < 0.01) and cell migration (P < 0.01), and increased re-endothelialization (P < 0.05). All of these effects were prevented by the co-administration of l-NAME. Insulin was found to decrease inducible NOS expression (P < 0.05) but increase eNOS phosphorylation (P < 0.05). These changes were also translated at the functional level where insulin improved endothelial-dependent vasorelaxation. To further study the NOS isoform involved in insulin action, s.c. insulin (0.1 U/day) was given to wild-type and eNOS knockout mice. We found that insulin was effective at decreasing neointimal formation in wild-type mice after wire injury of the femoral artery, whereas this effect of insulin was absent in eNOS knockout mice. These results show that the vasculoprotective effect of insulin after arterial injury is mediated by an eNOS-dependent mechanism.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Insulina/administração & dosagem , Neointima , Óxido Nítrico Sintase Tipo III/metabolismo , Lesões do Sistema Vascular/tratamento farmacológico , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Aorta Torácica/lesões , Aorta Torácica/patologia , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Implantes de Medicamento , Inibidores Enzimáticos/farmacologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Ratos Sprague-Dawley , Reepitelização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Lesões do Sistema Vascular/enzimologia , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA