Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620036

RESUMO

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Mitocôndrias , Mitocôndrias/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpes Simples/patologia , Animais , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/patologia , Progressão da Doença , Chlorocebus aethiops
2.
Proc Natl Acad Sci U S A ; 120(10): e2216975120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848579

RESUMO

Over the last few decades, symbiosis and the concept of holobiont-a host entity with a population of symbionts-have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (102 to 103 times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned.


Assuntos
Biomineralização , Elétrons , Fenômenos Físicos , Biofísica
3.
Proc Natl Acad Sci U S A ; 117(49): 30957-30965, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229583

RESUMO

Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.


Assuntos
Cálcio/metabolismo , Minerais/metabolismo , Modelos Biológicos , Ouriços-do-Mar/metabolismo , Transdução de Sinais , Animais , Larva/metabolismo , Mesoderma/citologia , Ouriços-do-Mar/citologia , Ouriços-do-Mar/ultraestrutura , Espectroscopia por Absorção de Raios X
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239904

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteogênese , Biomineralização , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Diferenciação Celular/fisiologia , Mitocôndrias/metabolismo , Neoplasias Ósseas/metabolismo , Proliferação de Células/fisiologia
5.
J Struct Biol ; 214(4): 107912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283630

RESUMO

The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Tomografia por Raios X , DNA , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética
6.
Proc Natl Acad Sci U S A ; 116(46): 22946-22952, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659055

RESUMO

The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cells with nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug's efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Cristalização , Eritrócitos/química , Eritrócitos/metabolismo , Heme/química , Heme/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Plasmodium falciparum/fisiologia
7.
Proc Natl Acad Sci U S A ; 115(43): 11000-11005, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30287487

RESUMO

Calcium storage organelles are common to all eukaryotic organisms and play a pivotal role in calcium signaling and cellular calcium homeostasis. In most organelles, the intraorganellar calcium concentrations rarely exceed micromolar levels. Acidic organelles called acidocalcisomes, which concentrate calcium into dense phases together with polyphosphates, are an exception. These organelles have been identified in diverse organisms, but, to date, only in cells that do not form calcium biominerals. Recently, a compartment storing molar levels of calcium together with phosphorous was discovered in an intracellularly calcifying alga, the coccolithophore Emiliania huxleyi, raising a possible connection between calcium storage organelles and calcite biomineralization. Here we used cryoimaging and cryospectroscopy techniques to investigate the anatomy and chemical composition of calcium storage organelles in their native state and at nanometer-scale resolution. We show that the dense calcium phase inside the calcium storage compartment of the calcifying coccolithophore Pleurochrysis carterae and the calcium phase stored in acidocalcisomes of the noncalcifying alga Chlamydomonas reinhardtii have common features. Our observations suggest that this strategy for concentrating calcium is a widespread trait and has been adapted for coccolith formation. The link we describe between acidocalcisomal calcium storage and calcium storage in coccolithophores implies that our physiological and molecular genetic understanding of acidocalcisomes could have relevance to the calcium pathway underlying coccolithophore calcification, offering a fresh entry point for mechanistic investigations on the adaptability of this process to changing oceanic conditions.


Assuntos
Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Microalgas/metabolismo , Organelas/metabolismo , Ácidos/metabolismo , Carbonato de Cálcio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Haptófitas/metabolismo , Homeostase/fisiologia , Minerais/metabolismo , Oceanos e Mares , Fósforo/metabolismo , Polifosfatos/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(30): 7662-7669, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29967179

RESUMO

The formation of atherosclerotic plaques in the blood vessel walls is the result of LDL particle uptake, and consequently of cholesterol accumulation in macrophage cells. Excess cholesterol accumulation eventually results in cholesterol crystal deposition, the hallmark of mature atheromas. We followed the formation of cholesterol crystals in J774A.1 macrophage cells with time, during accumulation of LDL particles, using a previously developed correlative cryosoft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM) technique. We show, in the initial accumulation stages, formation of small quadrilateral crystal plates associated with the cell plasma membrane, which may subsequently assemble into large aggregates. These plates match crystals of the commonly observed cholesterol monohydrate triclinic structure. Large rod-like cholesterol crystals form at a later stage in intracellular locations. Using cryotransmission electron microscopy (cryo-TEM) and cryoelectron diffraction (cryo-ED), we show that the structure of the large elongated rods corresponds to that of monoclinic cholesterol monohydrate, a recently determined polymorph of the triclinic crystal structure. These monoclinic crystals form with an unusual hollow cylinder or helical architecture, which is preserved in the mature rod-like crystals. The rod-like morphology is akin to that observed in crystals isolated from atheromas. We suggest that the crystals in the atherosclerotic plaques preserve in their morphology the memory of the structure in which they were formed. The identification of the polymorph structure, besides explaining the different crystal morphologies, may serve to elucidate mechanisms of cholesterol segregation and precipitation in atherosclerotic plaques.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Aterosclerose/patologia , Linhagem Celular , Microscopia Crioeletrônica , Macrófagos/ultraestrutura , Camundongos , Placa Aterosclerótica/ultraestrutura , Tomografia por Raios X
9.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066542

RESUMO

Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce.


Assuntos
Biomineralização/efeitos dos fármacos , Carbonato de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Distribuição Normal
10.
Microcirculation ; 27(7): e12643, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542908

RESUMO

OBJECTIVE: The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS: In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS: The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS: Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.


Assuntos
Criopreservação/métodos , Células Endoteliais/química , Células Endoteliais/ultraestrutura , Glicocálix/química , Glicocálix/ultraestrutura , Fixação de Tecidos/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Cultivadas , Feminino , Substituição ao Congelamento/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Microvasos/citologia , Tomografia por Raios X
11.
J Synchrotron Radiat ; 27(Pt 3): 772-778, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381780

RESUMO

A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.


Assuntos
Gotículas Lipídicas/química , Gotículas Lipídicas/ultraestrutura , Imagem Multimodal , Microscopia Crioeletrônica , Saccharomyces cerevisiae , Síncrotrons , Triglicerídeos/química
12.
Angew Chem Int Ed Engl ; 59(3): 1270-1278, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31697000

RESUMO

The iridium half-sandwich complex [Ir(η5 :κ1 -C5 Me4 CH2 py)(2-phenylpyridine)]PF6 is highly cytotoxic: 15-250× more potent than clinically used cisplatin in several cancer cell lines. We have developed a correlative 3D cryo X-ray imaging approach to specifically localize and quantify iridium within the whole hydrated cell at nanometer resolution. By means of cryo soft X-ray tomography (cryo-SXT), which provides the cellular ultrastructure at 50 nm resolution, and cryo hard X-ray fluorescence tomography (cryo-XRF), which provides the elemental sensitivity with a 70 nm step size, we have located the iridium anticancer agent exclusively in the mitochondria. Our methodology provides unique information on the intracellular fate of the metallodrug, without chemical fixation, labeling, or mechanical manipulation of the cells. This cryo-3D correlative imaging method can be applied to a number of biochemical processes for specific elemental localization within the native cellular landscape.


Assuntos
Irídio/química , Neoplasias/diagnóstico por imagem , Tomografia por Raios X/métodos , Humanos
13.
Small ; 15(36): e1902268, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31259481

RESUMO

Recent work in biomolecule-metal-organic framework (MOF) composites has proven to be an effective strategy for the protection of proteins. However, for other biomacromolecules such as nucleic acids, the encapsulation into nano MOFs and the related characterizations are in their infancy. Herein, encapsulation of a complete gene-set in zeolitic imidazolate framework-8 (ZIF-8) MOFs and cellular expression of the gene delivered by the nano MOF composites are reported. Using a green fluorescent protein (GFP) plasmid (plGFP) as a proof-of-concept genetic macromolecule, successful transfection of mammalian cancer cells with plGFP for up to 4 days is shown. Cell transfection assays and soft X-ray cryo-tomography (cryo-SXT) demonstrate the feasibility of DNA@MOF biocomposites as intracellular gene delivery vehicles. Expression occurs over relatively prolonged time points where the cargo nucleic acid is released gradually in order to maintain sustained expression.


Assuntos
Biomimética/métodos , DNA/química , Terapia Genética/métodos , Zeolitas/química , Plasmídeos/genética , Transfecção/métodos
14.
J Synchrotron Radiat ; 25(Pt 4): 1144-1152, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979176

RESUMO

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.

16.
Eur J Immunol ; 46(10): 2376-2387, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27405273

RESUMO

Lymphocyte migration, which is essential for effective immune responses, belongs to the so-called amoeboid migration. The lymphocyte migration is up to 100 times faster than between mesenchymal and epithelial cell types. Migrating lymphocytes are highly polarized in three well-defined structural and functional zones: uropod, medial zone, and leading edge (LE). The actiomyosin-dependent driving force moves forward the uropod, whereas massive actin rearrangements protruding the cell membrane are observed at the LE. These actin rearrangements resemble those observed at the immunological synapse driven by clathrin, a protein normally involved in endocytic processes. Here, we used cell lines as well as primary lymphocytes to demonstrate that clathrin and clathrin adaptors colocalize with actin at the LE of migrating lymphocytes, but not in other cellular zones that accumulate both clathrin and actin. Moreover, clathrin and clathrin adaptors, including Hrs, the clathrin adaptor for multivesicular bodies, drive local actin accumulation at the LE. Clathrin recruitment at the LE resulted necessary for a complete cell polarization and further lymphocyte migration in both 2D and 3D migration models. Therefore, clathrin, including the clathrin population associated to internal vesicles, controls lymphocyte migration by regulating actin rearrangements occurring at the LE.


Assuntos
Actinas/metabolismo , Movimento Celular , Clatrina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfoproteínas/metabolismo , Linfócitos T/fisiologia , Movimento Celular/genética , Polaridade Celular , Clatrina/genética , Humanos , Sinapses Imunológicas , Células Jurkat , Transporte Proteico , RNA Interferente Pequeno/genética , Vesículas Transportadoras/metabolismo
17.
J Am Chem Soc ; 138(45): 14931-14940, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27934213

RESUMO

We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.


Assuntos
Colesterol/síntese química , Macrófagos/química , Animais , Células Cultivadas , Colesterol/química , Microscopia Crioeletrônica , Cristalização , Macrófagos/citologia , Camundongos , Microscopia de Fluorescência , Tamanho da Partícula , Células RAW 264.7 , Processos Estocásticos , Propriedades de Superfície , Tomografia por Raios X
18.
J Nanobiotechnology ; 14: 15, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26939942

RESUMO

BACKGROUND: Recent advances in nanoparticle design have generated new possibilities for nano-biotechnology and nano-medicine. Here we used cryo-soft X-ray tomography (cryo-SXT) to collect comprehensive three-dimensional (3D) data to characterise the interaction of superparamagnetic iron oxide nanoparticles (SPION) with a breast cancer cell line. RESULTS: We incubated MCF-7 (a human breast cancer cell line) from 0 to 24 h with SPION (15 nm average diameter, coated with dimercaptosuccinic acid), a system that has been studied previously using various microscopy and bulk techniques. This system facilitates the validation and contextualization of the new 3D data acquired using the cryo-SXT-based approach. After vitrification, samples tested by correlative cryo-epifluorescent microscopy showed SPION accumulation in acidic vesicles related to the endocytic pathway. Microscopy grids bearing MCF-7 cells were then analysed by cryo-SXT to generate whole cell volume 3D maps. Cryo-SXT is an emerging technique that benefits from high X-ray penetration into the biological material to image close-to-native vitrified cells at nanometric resolution with no chemical fixation or staining agents. This unique possibility of obtaining 3D information from whole cells allows quantitative statistical analysis of SPION-containing vesicle (SCV) accumulation inside cells, including vesicle number and size, distances between vesicles, and their distance from the nucleus. CONCLUSIONS: Correlation between fluorescent microscopy, cryo-SXT and transmission electron microscopy allowed us to identify SCV and to generate 3D data for statistical analysis of SPION:cell interaction. This study supports continuous transfer of the internalized SPION from the plasma membrane to an accumulation area near the cell nucleus. Statistical analysis showed SCV increase in number and size concomitant with longer incubation times, and therefore an increase in their accumulated volume within the cell. This cumulative effect expands the accumulation area and cell organelles such as mitochondria are consequently displaced to the periphery. Our 3D cryo-SXT approach demonstrates that a comprehensive quantitative description of SPION:cell interaction is possible, which will serve as a basis for metal-based nanoparticle design and for selection of those best suited for hyperthermia treatment, drug delivery and image diagnosis in nanobiomedicine.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células/metabolismo , Nanopartículas/metabolismo , Linhagem Celular Tumoral , Criopreservação/métodos , Humanos , Imageamento Tridimensional/métodos , Células MCF-7 , Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos
19.
Nano Lett ; 15(10): 6932-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26339872

RESUMO

The discharge products of ether-based Li-O2 cells were grown directly on common carbon-coated TEM grids and observed by oxidation-state-sensitive full field transmission soft X-ray microscopy (TXM). The acquired data have permitted to quantify and localize with spatial resolution the distribution of the oxygen discharge products in these samples (i.e., lithium superoxide, peroxide, and carbonates) and appreciate several compositional, structural, and morphological aspects. Most of the peroxide particles had a toroidal shape, often with a central hole usually open on only one side, and which included significant amounts of superoxide-like phases (LiO2/Li2O2 ratio between 0.2 and 0.5). Smaller particles had smaller or no superoxide content, from which we infer that abundance of soluble LiO2 may have a role in toroid formation. Significant amount of carbonates were found irregularly distributed on the electrode surface, occasionally appearing as small particles and aggregates, and mostly coating lithium peroxide particles. This suggests the formation of a barrier that, similar to the solid electrolyte interface (SEI) critical in Li-ion batteries, requires an appropriate management for a reversible operation.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Microscopia Eletrônica/métodos , Oxigênio/química , Síncrotrons
20.
J Synchrotron Radiat ; 22(4): 1112-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134819

RESUMO

The performance of MISTRAL is reported, the soft X-ray transmission microscopy beamline at the ALBA light source (Barcelona, Spain) which is primarily dedicated to cryo soft X-ray tomography (cryo-SXT) for three-dimensional visualization of whole unstained cells at spatial resolutions down to 30 nm (half pitch). Short acquisition times allowing for high-throughput and correlative microscopy studies have promoted cryo-SXT as an emerging cellular imaging tool for structural cell biologists bridging the gap between optical and electron microscopy. In addition, the beamline offers the possibility of imaging magnetic domains in thin magnetic films that are illustrated here with an example.


Assuntos
Magnetismo , Microscopia/métodos , Tomografia/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA