Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 19(5): 1389-1401, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29125279

RESUMO

Six guanidine functionalized aliphatic biodegradable polycarbonates with varying molecular weights and charge densities were synthesized via postsynthesis modification of alkyne containing polycarbonates using Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry. The concept of passive diluting group was to modify the cationic charge density of the polycarbonate without changing its hydrophilicity. Within the molecular weight range from 8000 to 30000 g mol-1, these guanidine polycarbonates exhibited broad-spectrum biocidal activity with low toxicity to red blood cells (RBCs). The lowest molecular weight homopolymer sample (PG-8k-100) showed the best antimicrobial activity (MIC = 40 µg/mL against Escherichia coli and MIC = 20 µg/mL against Staphylococcus epidermidis) and least RBC toxicity (0.6% hemolysis at MIC). Within the three guanidine charge densities from 20% to 70%, the low to medium dilution samples (PG-8k-7030 and PG-8k-5050) had no obvious loss in antimicrobial activities compared to the nondiluted control sample PG-8k-100. However, upon further dilution, PG-8k-2080 gave the lowest antimicrobial activity.


Assuntos
Anti-Infecciosos/síntese química , Plásticos Biodegradáveis/síntese química , Animais , Anti-Infecciosos/farmacologia , Plásticos Biodegradáveis/farmacologia , Candida albicans/efeitos dos fármacos , Química Click/métodos , Eritrócitos/efeitos dos fármacos , Guanidina/química , Peso Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Ovinos , Staphylococcus/efeitos dos fármacos , Eletricidade Estática
2.
Food Sci Nutr ; 12(2): 1189-1206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370080

RESUMO

Essential oils (EOs) and plant extracts have demonstrated inhibitory activity against a wide range of pathogenic bacteria. In this study, the chemical composition of manuka, kanuka, peppermint, thyme, lavender, and feijoa leaf and peel EOs and feijoa peel and leaf extracts were analyzed, and their antimicrobial activity against Escherichia coli, Salmonella enterica Typhimurium, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes were determined. The results showed that the major compounds varied among different EOs and extracts, with menthol in peppermint EO, thymol and carvacrol in thyme EO, linalool in lavender EO, ß-caryophyllene in feijoa EO, and flavones in feijoa extract being the most prevalent. The study found that while EOs/extracts had antimicrobial activity alone, no individual EO/extract was highly effective against all tested species. Therefore, their combinations were tested to identify those that could broaden the spectrum of activity and act synergistically. The checkerboard method was applied to assess the possible synergism between the paired combinations of EOs/extract. The peppermint/thyme, peppermint/lavender, and peppermint/feijoa peel extract combinations exhibited a synergistic effect against E. coli and L. monocytogenes, with the peppermint/thyme and peppermint/feijoa peel extract combinations being the most effective against all five pathogens. Time-to-kill kinetics assays demonstrated that peppermint/thyme and peppermint/feijoa peel extract combinations achieved complete eradication of E. coli within 10-30 min and L. monocytogenes within 4-6 h. This study provides a promising approach to developing a natural alternative for food preservation using synergistic combinations of EOs/extracts, which could potentially reduce the required dosage and broaden their application in food products as natural preservatives.

3.
J Mater Chem B ; 11(34): 8170-8181, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37401360

RESUMO

With the emergence of deadly viral and bacterial infections, preventing the spread of microorganisms on surfaces has gained ever-increasing importance. This study investigates the potential of solid-state supercapacitors as antibacterial and antiviral devices. We developed a low-cost and flexible carbon cloth supercapacitor (CCSC) with highly efficient antibacterial and antiviral surface properties. The CCSC comprised two parallel layers of carbon cloth (CC) electrodes assembled in a symmetric, electrical double-layer supercapacitor structure that can be charged at low potentials between 1 to 2 V. The optimized CCSC exhibited a capacitance of 4.15 ± 0.3 mF cm-2 at a scan rate of 100 mV s-1, high-rate capability (83% retention of capacitance at 100 mV s-1 compared to its value at 5 mV s-1), and excellent electrochemical stability (97% retention of the initial capacitance after 1000 cycles). Moreover, the CCSC demonstrated outstanding flexibility and retained its full capacitance even when bent at high angles, making it suitable for wearable or flexible devices. Using its stored electrical charge, the charged CCSC disinfects bacteria effectively and neutralizes viruses upon surface contact with the positive and negative electrodes. The charged CCSC device yielded a 6-log CFU reduction of Escherichia coli bacterial inocula and a 5-log PFU reduction of HSV-1 herpes virus. Antibacterial and antiviral carbon cloth supercapacitors represent a promising platform technology for various applications, including electronic textiles and electronic skins, health monitoring or motion sensors, wound dressings, personal protective equipment (e.g., masks) and air filtration systems.


Assuntos
Antibacterianos , Antivirais , Antivirais/farmacologia , Fenômenos Físicos , Movimento (Física) , Antibacterianos/farmacologia , Carbono , Escherichia coli
4.
Ocul Surf ; 25: 76-86, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35568373

RESUMO

PURPOSE: Preclinical evaluation of the therapeutic potential of antimicrobial 265 nm UVC for infectious keratitis. METHODS: Four experiments explored UVC: 1) impact on bacterial and fungal lawns on agar, in individual or mixed culture, 2) bacterial inactivation dose in an in vitro deep corneal infection model, 3) dose validation in an ex vivo porcine keratitis model and 4) efficacy in a masked, randomised, controlled murine keratitis trial using bioluminescent Pseudomonas aeruginosa. RESULTS: Minimum effective UVC exposures ranged between 2 s and 5 s for lawn bacteria and fungi in individual or mixed culture. Significant P. aeruginosa growth inhibition in the in vitro infection model was achieved with 15 s UVC, that resulted in a >3.5 log10 reduction of bacteria in a subsequent ex vivo keratitis model (p < 0.05). Bioluminescence fell below baseline levels in all treated animals, within 8 h of treatment (p < 0.05), in the in vivo study. Re-epithelialisation with corneal clarity occurred within 24 h in 75% of UVC-treated cases, with no relapse at 48 h. On plating, bacteria were recovered only from untreated controls. CONCLUSIONS: UVC inhibited all tested bacteria and fungi, including mixed culture and strains linked to antibiotic resistance, in vitro, with exposures of ≤ 5 s. In vitro and ex vivo testing confirmed therapeutic potential of 15 s UVC. In vivo, 15 s UVC administered in two doses, 4 h apart, proved effective in treating murine bacterial keratitis.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Animais , Camundongos , Antibacterianos/uso terapêutico , Bactérias , Infecções Oculares Bacterianas/microbiologia , Ceratite/tratamento farmacológico , Pseudomonas aeruginosa , Suínos
5.
Clin Exp Optom ; 104(2): 162-166, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32495387

RESUMO

CLINICAL RELEVANCE: The monitoring and controlling of pH is important when preparing solutions for ophthalmic administration. In the case of povidone-iodine, dilution in an appropriate buffer is needed to improve its ophthalmic safety. BACKGROUND: Povidone-iodine is a broad-spectrum antiseptic agent that is commonly used in ophthalmic applications due to its cost-effectiveness and accessibility. However, native povidone-iodine has a pH of about 4.0 and is known to irritate the ocular surface. This study assessed whether adjusting povidone-iodine formulation pH would influence its ex vivo ophthalmic safety, alongside its impact on antibacterial efficacy and storage stability. METHODS: One per cent w/v povidone-iodine was diluted in normal saline, or 0.1-mol/l citrate or phosphate buffers to yield solutions with a pH ranging from 4.0 to 7.0. Ocular irritancy was evaluated using the bovine cornea opacity and permeability assay. Antibacterial efficacy was assessed by evaluating povidone-iodine minimum inhibitory concentration and minimum bactericidal concentration at varied pH. Storage stability of the preparations was determined over 30-days at room temperature (20-25°C). RESULTS: Combining povidone-iodine with phosphate buffer notably decreased ocular irritancy of the antiseptic. Surprisingly, combining povidone-iodine with citrate buffer potentiated irritant effects of the preparation. Antibacterial efficacy of povidone-iodine was reduced when formulation pH was increased from 4.0 to 7.0, although its general activity was retained. Finally, povidone-iodine remained stable in both normal saline and phosphate buffer over 30-days. CONCLUSION: Ophthalmic application of povidone-iodine can be optimised by adjusting the pH of the formulation to 7.0 using phosphate buffer, reducing irritancy while maintaining adequate antibacterial efficacy and storage stability.


Assuntos
Anti-Infecciosos Locais , Povidona-Iodo , Animais , Antibacterianos/uso terapêutico , Bovinos , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Soluções Oftálmicas , Povidona-Iodo/farmacologia
6.
Macromol Biosci ; 20(7): e2000065, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32459065

RESUMO

Nine guanidinylated amphiphilic polycarbonates are rationally designed and synthesized. Each polymer has the same biodegradable backbone but different side groups. The influence of the hydrophobic/hydrophilic effect on antimicrobial activities and cytotoxicity is systematically investigated. The results verify that tuning the length of the spacer arm between the cationic guanidine group and the polycarbonate backbone is an efficient design strategy to alter the hydrophobic/hydrophilic balance without changing the cationic charge density. A spacer arm of six methylene units (CH2 )6 shows the best antimicrobial activity (minimum inhibitory concentration, MIC = 40 µg mL-1 against Escherichia coli, MIC = 20 µg mL-1 against Staphylococcus aureus, MIC = 40 µg mL-1 against Candida albicans) with low hemolytic activity (HC50 > 2560 µg mL-1 ). Furthermore, the guanidinylated polycarbonates exhibit the ability to self-assemble and present micelle-like nanostructure due to their intrinsic amphiphilic macromolecular structure. Transmission electron microscopy and dynamic light scattering measurements confirm polymer micelle formation in aqueous solution with sizes ranging from 82 to 288 nm.


Assuntos
Antibacterianos/farmacologia , Guanidina/farmacologia , Micelas , Cimento de Policarboxilato/farmacologia , Tensoativos/farmacologia , Animais , Guanidina/síntese química , Guanidina/química , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Piperazinas/química , Cimento de Policarboxilato/síntese química , Cimento de Policarboxilato/química , Ovinos , Tensoativos/síntese química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA