Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 16(3): 1896-902, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26844954

RESUMO

We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ µm, high on/off ratios up to >10(9), and high drive currents exceeding 320 µA µm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility µFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.

2.
Nano Lett ; 14(6): 3594-601, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24844426

RESUMO

We report the fabrication of both n-type and p-type WSe2 field-effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e(2)/h, a high ON/OFF ratio of >10(7) at 170 K, and large electron and hole mobility of µ ≈ 200 cm(2) V(-1 )s(-1) at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ∼330 cm(2) V(-1) s(-1) and that of holes to ∼270 cm(2) V(-1) s(-1). We attribute our ability to observe the intrinsic, phonon-limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible, and transparent low-resistance ohmic contacts to a wide range of quasi-2D semiconductors.

3.
Angew Chem Int Ed Engl ; 53(52): 14462-7, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25366163

RESUMO

Langmuir-Blodgett films of metallosurfactants were used in Au|molecule|Au devices to investigate the mechanisms of current rectification.

5.
ACS Nano ; 8(5): 5079-88, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24730685

RESUMO

We report low-temperature scanning tunneling microscopy characterization of MoSe2 crystals and the fabrication and electrical characterization of MoSe2 field-effect transistors on both SiO2 and parylene-C substrates. We find that the multilayer MoSe2 devices on parylene-C show a room-temperature mobility close to the mobility of bulk MoSe2 (100-160 cm(2) V(-1) s(-1)), which is significantly higher than that on SiO2 substrates (≈50 cm(2) V(-1) s(-1)). The room-temperature mobility on both types of substrates are nearly thickness-independent. Our variable-temperature transport measurements reveal a metal-insulator transition at a characteristic conductivity of e(2)/h. The mobility of MoSe2 devices extracted from the metallic region on both SiO2 and parylene-C increases up to ≈500 cm(2) V(-1) s(-1) as the temperature decreases to ≈100 K, with the mobility of MoSe2 on SiO2 increasing more rapidly. In spite of the notable variation of charged impurities as indicated by the strongly sample-dependent low-temperature mobility, the mobility of all MoSe2 devices on SiO2 converges above 200 K, indicating that the high temperature (>200 K) mobility in these devices is nearly independent of the charged impurities. Our atomic force microscopy study of SiO2 and parylene-C substrates further rules out the surface roughness scattering as a major cause of the substrate-dependent mobility. We attribute the observed substrate dependence of MoSe2 mobility primarily to the surface polar optical phonon scattering originating from the SiO2 substrate, which is nearly absent in MoSe2 devices on parylene-C substrate.

6.
ACS Nano ; 7(5): 4449-58, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23590723

RESUMO

We report the fabrication of ionic liquid (IL)-gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility µ ≈ 60 cm(2) V(-1) s(-1) at 250 K in IL-gated devices exceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from ≈ 100 cm(2) V(-1) s(-1) at 180 K to ≈ 220 cm(2) V(-1) s(-1) at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >10(7) (10(4)) for electrons (holes), and a near ideal subthreshold swing of ≈ 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin IL dielectric layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA