Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Psychophysiology ; 60(3): e14197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285491

RESUMO

Post-traumatic stress disorder (PTSD) is an independent risk factor for incident heart failure, but the underlying cardiac mechanisms remained elusive. Impedance cardiography (ICG), especially when measured during stress, can help understand the underlying psychophysiological pathways linking PTSD with heart failure. We investigated the association between PTSD and ICG-based contractility metrics (pre-ejection period (PEP) and Heather index (HI)) using a controlled twin study design with a laboratory-based traumatic reminder stressor. PTSD status was assessed using structured clinical interviews. We acquired synchronized electrocardiograms and ICG data while playing personalized-trauma scripts. Using linear mixed-effects models, we examined twins as individuals and within PTSD-discordant pairs. We studied 137 male veterans (48 pairs, 41 unpaired singles) from Vietnam War Era with a mean (standard deviation) age of 68.5(2.5) years. HI during trauma stress was lower in the PTSD vs. non-PTSD individuals (7.2 vs. 9.3 [ohm/s2 ], p = .003). PEP reactivity (trauma minus neutral) was also more negative in PTSD vs. non-PTSD individuals (-7.4 vs. -2.0 [ms], p = .009). The HI and PEP associations with PTSD persisted for adjusted models during trauma and reactivity, respectively. For within-pair analysis of eight PTSD-discordant twin pairs (out of 48 pairs), PTSD was associated with lower HI in neutral, trauma, and reactivity, whereas no association was found between PTSD and PEP. PTSD was associated with reduced HI and PEP, especially with trauma recall stress. This combination of increased sympathetic activation and decreased cardiac contractility combined may be concerning for increased heart failure risk after recurrent trauma re-experiencing in PTSD.


Assuntos
Insuficiência Cardíaca , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Idoso , Transtornos de Estresse Pós-Traumáticos/complicações , Impedância Elétrica , Gêmeos , Insuficiência Cardíaca/complicações
2.
J Electrocardiol ; 74: 5-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878534

RESUMO

Despite the recent explosion of machine learning applied to medical data, very few studies have examined algorithmic bias in any meaningful manner, comparing across algorithms, databases, and assessment metrics. In this study, we compared the biases in sex, age, and race of 56 algorithms on over 130,000 electrocardiograms (ECGs) using several metrics and propose a machine learning model design to reduce bias. Participants of the 2021 PhysioNet Challenge designed and implemented working, open-source algorithms to identify clinical diagnosis from 2- lead ECG recordings. We grouped the data from the training, validation, and test datasets by sex (male vs female), age (binned by decade), and race (Asian, Black, White, and Other) whenever possible. We computed recording-wise accuracy, area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), F-measure, and the Challenge Score for each of the 56 algorithms. The Mann-Whitney U and the Kruskal-Wallis tests assessed the performance differences of algorithms across these demographic groups. Group trends revealed similar values for the AUROC, AUPRC, and F-measure for both male and female groups across the training, validation, and test sets. However, recording-wise accuracies were 20% higher (p < 0.01) and the Challenge Score 12% lower (p = 0.02) for female subjects on the test set. AUPRC, F-measure, and the Challenge Score increased with age, while recording-wise accuracy and AUROC decreased with age. The results were similar for the training and test sets, but only recording-wise accuracy (12% decrease per decade, p < 0.01), Challenge Score (1% increase per decade, p < 0.01), and AUROC (1% decrease per decade, p < 0.01) were statistically different on the test set. We observed similar AUROC, AUPRC, Challenge Score, and F-measure values across the different race categories. But, recording-wise accuracies were significantly lower for Black subjects and higher for Asian subjects on the training (31% difference, p < 0.01) and test (39% difference, p < 0.01) sets. A top performing model was then retrained using an additional constraint which simultaneously minimized differences in performance across sex, race and age. This resulted in a modest reduction in performance, with a significant reduction in bias. This work provides a demonstration that biases manifest as a function of model architecture, population, cost function and optimization metric, all of which should be closely examined in any model.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Feminino , Humanos , Masculino , Fatores Sexuais , Fatores Etários
3.
BMC Cardiovasc Disord ; 19(1): 255, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726979

RESUMO

BACKGROUND: The risk of sudden cardiac death (SCD) is known to be dynamic. However, the accuracy of a dynamic SCD prediction is unknown. We aimed to measure the dynamic predictive accuracy of ECG biomarkers of SCD and competing non-sudden cardiac death (non-SCD). METHODS: Atherosclerosis Risk In Community study participants with analyzable ECGs in sinus rhythm were included (n = 15,716; 55% female, 73% white, age 54.2 ± 5.8 y). ECGs of 5 follow-up visits were analyzed. Global electrical heterogeneity and traditional ECG metrics (heart rate, QRS, QTc) were measured. Adjudicated SCD was the primary outcome; non-SCD was the competing outcome. Time-dependent area under the receiver operating characteristic curve (ROC(t) AUC) analysis was performed to assess the prediction accuracy of a continuous biomarker in a period of 3,6,9 months, and 1,2,3,5,10, and 15 years using a survival analysis framework. Reclassification improvement as compared to clinical risk factors (age, sex, race, diabetes, hypertension, coronary heart disease, stroke) was measured. RESULTS: Over a median 24.4 y follow-up, there were 577 SCDs (incidence 1.76 (95%CI 1.63-1.91)/1000 person-years), and 829 non-SCDs [2.55 (95%CI 2.37-2.71)]. No ECG biomarkers predicted SCD within 3 months after ECG recording. Within 6 months, spatial ventricular gradient (SVG) elevation predicted SCD (AUC 0.706; 95%CI 0.526-0.886), but not a non-SCD (AUC 0.527; 95%CI 0.303-0.75). SVG elevation more accurately predicted SCD if the ECG was recorded 6 months before SCD (AUC 0.706; 95%CI 0.526-0.886) than 2 years before SCD (AUC 0.608; 95%CI 0.515-0.701). Within the first 3 months after ECG recording, only SVG azimuth improved reclassification of the risk beyond clinical risk factors: 18% of SCD events were reclassified from low or intermediate risk to a high-risk category. QRS-T angle was the strongest long-term predictor of SCD (AUC 0.710; 95%CI 0.668-0.753 for ECG recorded within 10 years before SCD). CONCLUSION: Short-term and long-term predictive accuracy of ECG biomarkers of SCD differed, reflecting differences in transient vs. persistent SCD substrates. The dynamic predictive accuracy of ECG biomarkers should be considered for competing SCD risk scores. The distinction between markers predicting short-term and long-term events may represent the difference between markers heralding SCD (triggers or transient substrates) versus markers identifying persistent substrate.


Assuntos
Arritmias Cardíacas/diagnóstico , Morte Súbita Cardíaca/epidemiologia , Eletrocardiografia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Estados Unidos/epidemiologia
4.
Pediatr Crit Care Med ; 20(1): 38-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30614970

RESUMO

OBJECTIVES: Heart rate variability is controlled by the autonomic nervous system. After brain death, this autonomic control stops, and heart rate variability is significantly decreased. However, it is unknown if early changes in heart rate variability are predictive of progression to brain death. We hypothesized that in brain-injured children, lower heart rate variability is an early indicator of autonomic system failure, and it predicts progression to brain death. We additionally explored the association between heart rate variability and markers of brain dysfunction such as electroencephalogram and neurologic examination between brain-injured children who progressed to brain death and those who survived. DESIGN: Retrospective case-control study. SETTING: PICU, single institution. PATIENTS: Children up to 18 years with a Glasgow Coma Scale score of less than 8 admitted between August of 2016 and December of 2017, who had electrocardiographic data available for heart rate variability analysis, were included. EXCLUSION CRITERIA: patients who died of causes other than brain death. Twenty-three patients met inclusion criteria: six progressed to brain death (cases), and 17 survived (controls). Five-minute electrocardiogram segments were used to estimate heart rate variability in the time domain (SD of normal-normal intervals, root mean square successive differences), frequency domain (low frequency, high frequency, low frequency/high frequency ratio), Poincaré plots, and approximate entropy. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients who progressed to brain death exhibited significantly lower heart rate variability in the time domain, frequency domain, and Poincaré plots (p < 0.01). The odds of death increased with decreasing low frequency (odds ratio, 4.0; 95% CI, 1.2-13.6) and high frequency (odds ratio, 2.5; 95% CI, 1.2-5.4) heart rate variability power (p < 0.03). Heart rate variability was significantly lower in those with discontinuous or attenuated/featureless electroencephalogram versus those with slow/disorganized background (p < 0.03). CONCLUSIONS: These results support the concept of autonomic system failure as an early indicator of impending brain death in brain-injured children. Furthermore, decreased heart rate variability is associated with markers of CNS dysfunction such as electroencephalogram abnormalities.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Morte Encefálica/fisiopatologia , Lesões Encefálicas/fisiopatologia , Frequência Cardíaca/fisiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Escala de Coma de Glasgow , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Masculino , Estudos Retrospectivos
5.
Ann Noninvasive Electrocardiol ; 24(3): e12614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30403442

RESUMO

BACKGROUND: Global electrical heterogeneity (GEH) is associated with sudden cardiac death (SCD) in adults of 45 years and above. However, GEH has not been previously measured in young athletes. The goal of this study was to establish a reference for vectorcardiograpic (VCG) metrics in male and female athletes. METHODS: Skiers (n = 140; mean age 19.2 ± 3.5 years; 66% male, 94% white; 53% professional athletes) were enrolled in a prospective cohort. Resting 12-lead ECGs were interpreted per the International ECG criteria. Associations of age, sex, and athletic performance with GEH were studied. RESULTS: In age and training level-adjusted analyses, male sex was associated with a larger T vector [T peak magnitude +186 (95% CI 106-266) µV] and a wider spatial QRS-T angle [+28.2 (17.3-39.2)°] as compared to women. Spatial QRS-T angle in the ECG left ventricular hypertrophy (LVH) voltage group (n = 21; 15%) and normal ECG group did not differ (67.7 ± 25.0 vs. 66.8 ± 28.2; p = 0.914), suggesting that ECG LVH voltage in athletes reflects physiological remodeling. In contrast, skiers with right ventricular hypertrophy (RVH) voltage (n = 26, 18.6%) had wider QRS-T angle (92.7 ± 29.6 vs. 66.8 ± 28.2°; p = 0.001), larger SAI QRST (194.9 ± 30.2 vs. 157.8 ± 42.6 mV × ms; p < 0.0001), but similar peak SVG vector magnitude (1976 ± 548 vs. 1939 ± 395 µV; p = 0.775) as compared to the normal ECG group. Better athletic performance was associated with the narrower QRS-T angle. Each 10% worsening in an athlete's Federation Internationale de' Ski downhill ranking percentile was associated with an increase in spatial QRS-T angle by 2.1 (95% CI 0.3-3.9) degrees (p = 0.013). CONCLUSION: Vectorcardiograpic adds nuances to ECG phenomena in athletes.


Assuntos
Atletas/estatística & dados numéricos , Morte Súbita Cardíaca/prevenção & controle , Eletrocardiografia/métodos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/epidemiologia , Vetorcardiografia/métodos , Adolescente , Fatores Etários , Estudos de Coortes , Feminino , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Idaho , Masculino , Prevalência , Estudos Prospectivos , Valores de Referência , Medição de Risco , Fatores Sexuais , Esqui , Adulto Jovem
6.
J Electrocardiol ; 51(1): 60-67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29032808

RESUMO

We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement.


Assuntos
Eletrocardiografia/métodos , Imageamento Tridimensional , Fotografação/métodos , Tronco/diagnóstico por imagem , Eletrocardiografia/instrumentação , Eletrodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Variações Dependentes do Observador , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Tronco/anatomia & histologia
7.
J Electrocardiol ; 50(3): 342-348, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28069275

RESUMO

The purpose of this study was to develop optimal configuration of adhesive ECG patches placement on the torso, which would provide the best agreement with the Frank orthogonal ECGs. Ten seconds of orthogonal ECG followed by 3-5min of ECGs using patches at 5 different locations simultaneously on the torso were recorded in 50 participants at rest in sitting position. Median beat was generated for each ECG and 3 patch ECGs that best correlate with orthogonal ECGs were selected for each participant. For agreement analysis, spatial QRS-T angle, spatial QRS and T vector characteristics, spatial ventricular gradient, roundness, thickness and planarity of vectorcardiographic (VCG) loops were measured. Key VCG parameters showed high agreement in Bland-Altman analysis (spatial QRS-T angle on 3-patch ECG vs. Frank ECG bias 0.3 (95% limits of agreement [-6.23;5.71 degrees]), Lin's concordance coefficient=0.996). In conclusion, newly developed orthogonal 3-patch ECG can be used for long-term VCG monitoring.


Assuntos
Adesivos , Arritmias Cardíacas/diagnóstico , Eletrocardiografia Ambulatorial/instrumentação , Eletrocardiografia Ambulatorial/métodos , Eletrodos , Vetorcardiografia/instrumentação , Vetorcardiografia/métodos , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
J Am Heart Assoc ; 13(7): e032740, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38533972

RESUMO

BACKGROUND: Autonomic function can be measured noninvasively using heart rate variability (HRV), which indexes overall sympathovagal balance. Deceleration capacity (DC) of heart rate is a more specific metric of vagal modulation. Higher values of these measures have been associated with reduced mortality risk primarily in patients with cardiovascular disease, but their significance in community samples is less clear. METHODS AND RESULTS: This prospective twin study followed 501 members from the VET (Vietnam Era Twin) registry. At baseline, frequency domain HRV and DC were measured from 24-hour Holter ECGs. During an average 12-year follow-up, all-cause death was assessed via the National Death Index. Multivariable Cox frailty models with random effect for twin pair were used to examine the hazard ratios of death per 1-SD increase in log-transformed autonomic metrics. Both in the overall sample and comparing twins within pairs, higher values of low-frequency HRV and DC were significantly associated with lower hazards of all-cause death. In within-pair analysis, after adjusting for baseline factors, there was a 22% and 27% lower hazard of death per 1-SD increment in low-frequency HRV and DC, respectively. Higher low-frequency HRV and DC, measured during both daytime and nighttime, were associated with decreased hazard of death, but daytime measures showed numerically stronger associations. Results did not substantially vary by zygosity. CONCLUSIONS: Autonomic inflexibility, and especially vagal withdrawal, are important mechanistic pathways of general mortality risk, independent of familial and genetic factors.


Assuntos
Veteranos , Humanos , Bradicardia , Desaceleração , Eletrocardiografia Ambulatorial , Frequência Cardíaca/fisiologia , Estudos Prospectivos
10.
PLOS Digit Health ; 2(9): e0000324, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37695769

RESUMO

Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resource-constrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge.

11.
Psychophysiology ; 60(2): e14167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35959570

RESUMO

Post-traumatic stress disorder (PTSD) has been associated with cardiovascular disease (CVD), but the mechanisms remain unclear. Autonomic dysfunction, associated with higher CVD risk, may be triggered by acute PTSD symptoms. We hypothesized that a laboratory-based trauma reminder challenge, which induces acute PTSD symptoms, provokes autonomic dysfunction in a cohort of veteran twins. We investigated PTSD-associated real-time physiologic changes with a simulation of traumatic experiences in which the twins listened to audio recordings of a one-minute neutral script followed by a one-minute trauma script. We examined two heart rate variability metrics: deceleration capacity (DC) and logarithmic low frequency (log-LF) power from beat-to-beat intervals extracted from ambulatory electrocardiograms. We assessed longitudinal PTSD status with a structured clinical interview and the severity with the PTSD Symptoms Scale. We used linear mixed-effects models to examine twin dyads and account for cardiovascular and behavioral risk factors. We examined 238 male Veteran twins (age 68 ± 3 years old, 4% black). PTSD status and acute PTSD symptom severity were not associated with DC or log-LF measured during the neutral session, but were significantly associated with lower DC and log-LF during the traumatic script listening session. Long-standing PTSD was associated with a 0.38 (95% confidence interval, -0.83,-0.08) and 0.79 (-1.30,-0.29) standardized unit lower DC and log-LF, respectively, compared to no history of PTSD. Traumatic reminders in patients with PTSD lead to real-time autonomic dysregulation and suggest a potential causal mechanism for increased CVD risk, based on the well-known relationships between autonomic dysfunction and CVD mortality.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Idoso , Transtornos de Estresse Pós-Traumáticos/complicações , Sistema Nervoso Autônomo , Frequência Cardíaca/fisiologia
12.
Int J Cardiol ; 362: 176-182, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577169

RESUMO

INTRODUCTION: Sleep disturbance is associated with autonomic dysregulation, but the temporal directionality of this relationship remains uncertain. The objective of this study was to evaluate the temporal relationships between objectively measured sleep disturbance and daytime or nighttime autonomic dysregulation in a co-twin control study. METHODS: A total of 68 members (34 pairs) of the Vietnam Era Twin Registry were studied. Twins underwent 7-day in-home actigraphy to derive objective measures of sleep disturbance. Autonomic function indexed by heart rate variability (HRV) was obtained using 7-day ECG monitoring with a wearable patch. Multivariable vector autoregressive models with Granger causality tests were used to examine the temporal directionality of the association between daytime and nighttime HRV and sleep metrics, within twin pairs, using 7-day collected ECG data. RESULTS: Twins were all male, mostly white (96%), with mean (SD) age of 69 (2) years. Higher daytime HRV across multiple domains was bidirectionally associated with longer total sleep time and lower wake after sleep onset; these temporal dynamics were extended to a window of 48 h. In contrast, there was no association between nighttime HRV and sleep measures in subsequent nights, or between sleep measures from previous nights and subsequent nighttime HRV. CONCLUSIONS: Daytime, but not nighttime, autonomic function indexed by HRV has bidirectional associations with several sleep dimensions. Dysfunctions in autonomic regulation during wakefulness can lead to subsequent shorter sleep duration and worse sleep continuity, and vice versa, and their influence on each other may extend beyond 24 h.


Assuntos
Transtornos do Sono-Vigília , Actigrafia , Idoso , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Polissonografia , Sono/fisiologia , Transtornos do Sono-Vigília/diagnóstico
13.
Physiol Meas ; 43(8)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35815673

RESUMO

Objective.The standard twelve-lead electrocardiogram (ECG) is a widely used tool for monitoring cardiac function and diagnosing cardiac disorders. The development of smaller, lower-cost, and easier-to-use ECG devices may improve access to cardiac care in lower-resource environments, but the diagnostic potential of these devices is unclear. This work explores these issues through a public competition: the 2021 PhysioNet Challenge. In addition, we explore the potential for performance boosting through a meta-learning approach.Approach.We sourced 131,149 twelve-lead ECG recordings from ten international sources. We posted 88,253 annotated recordings as public training data and withheld the remaining recordings as hidden validation and test data. We challenged teams to submit containerized, open-source algorithms for diagnosing cardiac abnormalities using various ECG lead combinations, including the code for training their algorithms. We designed and scored the algorithms using an evaluation metric that captures the risks of different misdiagnoses for 30 conditions. After the Challenge, we implemented a semi-consensus voting model on all working algorithms.Main results.A total of 68 teams submitted 1,056 algorithms during the Challenge, providing a variety of automated approaches from both academia and industry. The performance differences across the different lead combinations were smaller than the performance differences across the different test databases, showing that generalizability posed a larger challenge to the algorithms than the choice of ECG leads. A voting model improved performance by 3.5%.Significance.The use of different ECG lead combinations allowed us to assess the diagnostic potential of reduced-lead ECG recordings, and the use of different data sources allowed us to assess the generalizability of the algorithms to diverse institutions and populations. The submission of working, open-source code for both training and testing and the use of a novel evaluation metric improved the reproducibility, generalizability, and applicability of the research conducted during the Challenge.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Bases de Dados Factuais , Eletrocardiografia/métodos , Reprodutibilidade dos Testes
14.
JMIR Form Res ; 6(8): e36972, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001367

RESUMO

BACKGROUND: Heart failure (HF) is a major cause of frequent hospitalization and death. Early detection of HF symptoms using smartphone-based monitoring may reduce adverse events in a low-cost, scalable way. OBJECTIVE: We examined the relationship of HF decompensation events with smartphone-based features derived from passively and actively acquired data. METHODS: This was a prospective cohort study in which we monitored HF participants' social and movement activities using a smartphone app and followed them for clinical events via phone and chart review and classified the encounters as compensated or decompensated by reviewing the provider notes in detail. We extracted motion, location, and social interaction passive features and self-reported quality of life weekly (active) with the short Kansas City Cardiomyopathy Questionnaire (KCCQ-12) survey. We developed and validated an algorithm for classifying decompensated versus compensated clinical encounters (hospitalizations or clinic visits). We evaluated models based on single modality as well as early and late fusion approaches combining patient-reported outcomes and passive smartphone data. We used Shapley additive explanation values to quantify the contribution and impact of each feature to the model. RESULTS: We evaluated 28 participants with a mean age of 67 years (SD 8), among whom 11% (3/28) were female and 46% (13/28) were Black. We identified 62 compensated and 48 decompensated clinical events from 24 and 22 participants, respectively. The highest area under the precision-recall curve (AUCPr) for classifying decompensation was with a late fusion approach combining KCCQ-12, motion, and social contact features using leave-one-subject-out cross-validation for a 2-day prediction window. It had an AUCPr of 0.80, with an area under the receiver operator curve (AUC) of 0.83, a positive predictive value (PPV) of 0.73, a sensitivity of 0.77, and a specificity of 0.88 for a 2-day prediction window. Similarly, the 4-day window model had an AUC of 0.82, an AUCPr of 0.69, a PPV of 0.62, a sensitivity of 0.68, and a specificity of 0.87. Passive social data provided some of the most informative features, with fewer calls of longer duration associating with a higher probability of future HF decompensation. CONCLUSIONS: Smartphone-based data that includes both passive monitoring and actively collected surveys may provide important behavioral and functional health information on HF status in advance of clinical visits. This proof-of-concept study, although small, offers important insight into the social and behavioral determinants of health and the feasibility of using smartphone-based monitoring in this population. Our strong results are comparable to those of more active and expensive monitoring approaches, and underscore the need for larger studies to understand the clinical significance of this monitoring method.

15.
Physiol Meas ; 42(1): 015002, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33296886

RESUMO

OBJECTIVE: High morphological variability magnitude (MVM) and microvolt T wave alternans (TWA) within an electrocardiogram (ECG) signifies increased electrical instability and risk of sudden cardiac death. However, the influence of breathing rate (BR), heart rate (HR), and signal-to-noise ratio (SNR) is unknown and may inflate measured values. APPROACH: We synthesize ECGs with morphologies derived from the Physikalisch-Technische Bundesanstalt Database. We calculate MVM and TWA at varying BRs, HRs and SNRs. We compare the MVM and TWA of signal with versus without breathing at varying HRs and SNRs. We then quantify the percentage of MVM and TWA estimates affected by BR and HR in a healthy population and assess the effect of removing these affected estimates on a method for classifying individuals with and without post-traumatic stress disorder (PTSD). MAIN RESULTS: For signals with high SNR (>15 dB), MVM is significantly increased when BRs are > 9 respirations/minute (rpm) and HRs are < 100 beats/minute (bpm). Increased TWAs are detected for HR/BR pairs of 60/15, 60/30 and 120/30 bpm/rpm. For 18 healthy participants, 8.33% of TWA windows and 66.76% of MVM windows are affected by BR and HR. On average, the number of windows with TWA elevations > 47 µV decreases by 23% after excluding regions with significant BR and HR effect. Adding HR and BR to a morphological variability feature increases the classification performance by 6% for individuals with and without PTSD. SIGNIFICANCE: Physiological BR and HR significantly increase MVM and TWA , indicating that BR and HR should be considered separately as confounders. The code for this work has been released as part of an open-source toolbox.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Morte Súbita Cardíaca , Frequência Cardíaca , Humanos , Taxa Respiratória
16.
Physiol Meas ; 41(12): 124003, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176294

RESUMO

OBJECTIVE: Vast 12-lead ECGs repositories provide opportunities to develop new machine learning approaches for creating accurate and automatic diagnostic systems for cardiac abnormalities. However, most 12-lead ECG classification studies are trained, tested, or developed in single, small, or relatively homogeneous datasets. In addition, most algorithms focus on identifying small numbers of cardiac arrhythmias that do not represent the complexity and difficulty of ECG interpretation. This work addresses these issues by providing a standard, multi-institutional database and a novel scoring metric through a public competition: the PhysioNet/Computing in Cardiology Challenge 2020. APPROACH: A total of 66 361 12-lead ECG recordings were sourced from six hospital systems from four countries across three continents; 43 101 recordings were posted publicly with a focus on 27 diagnoses. For the first time in a public competition, we required teams to publish open-source code for both training and testing their algorithms, ensuring full scientific reproducibility. MAIN RESULTS: A total of 217 teams submitted 1395 algorithms during the Challenge, representing a diversity of approaches for identifying cardiac abnormalities from both academia and industry. As with previous Challenges, high-performing algorithms exhibited significant drops ([Formula: see text]10%) in performance on the hidden test data. SIGNIFICANCE: Data from diverse institutions allowed us to assess algorithmic generalizability. A novel evaluation metric considered different misclassification errors for different cardiac abnormalities, capturing the outcomes and risks of different diagnoses. Requiring both trained models and code for training models improved the generalizability of submissions, setting a new bar in reproducibility for public data science competitions.


Assuntos
Cardiologia , Eletrocardiografia , Algoritmos , Arritmias Cardíacas/diagnóstico , Bases de Dados Factuais , Eletrocardiografia/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
17.
Cardiovasc Digit Health J ; 1(2): 80-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34308405

RESUMO

BACKGROUND­: Sex is a well-recognized risk factor for sudden cardiac death (SCD). We hypothesized that sex modifies the association of electrophysiological (EP) substrate with SCD. METHODS­: Participants from the Atherosclerosis Risk in Communities study with analyzable ECGs (n=14,725; age, 54.2±5.8 yrs; 55% female, 74% white) were included. EP substrate was characterized by heart rate, QRS, QTc, Cornell voltage, spatial ventricular gradient (SVG), and sum absolute QRST integral (SAI QRST) ECG metrics. Two competing outcomes were adjudicated SCD and nonSCD. Interaction of ECG metrics with sex was studied in Cox proportional hazards and Fine-Gray competing risk models. Model 1 was adjusted for prevalent cardiovascular disease (CVD) and risk factors. Time-updated model 2 was additionally adjusted for incident non-fatal CVD. Relative hazard ratio (RHR) and relative sub-hazard ratio (RSHR) with a 95% confidence interval for SCD and nonSCD risk for women relative to men was calculated. Model 1 was adjusted for prevalent CVD and risk factors. Time-updated model 2 was additionally adjusted for incident non-fatal CVD. RESULTS­: Over a median follow-up of 24.4 years, there were 530 SCDs (incidence 1.72 (1.58-1.88)/1000 person-years). Women as compared to men experienced a greater risk of SCD associated with Cornell voltage (RHR 1.18(1.06-1.32); P=0.003), SAI QRST (RHR 1.16(1.04-1.30); P=0.007), and SVG magnitude (RHR 1.24(1.05-1.45); P=0.009), independently from incident CVD. CONCLUSION­: In women, the global EP substrate is associated with up to 24% greater risk of SCD than in men, suggesting differences in underlying mechanisms and the need for sex-specific SCD risk stratification.

18.
Front Physiol ; 11: 344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390862

RESUMO

BACKGROUND: Mechanisms of arrhythmogenicity in hypertrophic cardiomyopathy (HCM) are not well understood. OBJECTIVE: To characterize an electrophysiological substrate of HCM in comparison to ischemic cardiomyopathy (ICM), or healthy individuals. METHODS: We conducted a prospective case-control study. The study enrolled HCM patients at high risk for ventricular tachyarrhythmia (VT) [n = 10; age 61 ± 9 years; left ventricular ejection fraction (LVEF) 60 ± 9%], and three comparison groups: healthy individuals (n = 10; age 28 ± 6 years; LVEF > 70%), ICM patients with LV hypertrophy (LVH) and known VT (n = 10; age 64 ± 9 years; LVEF 31 ± 15%), and ICM patients with LVH and no known VT (n = 10; age 70 ± 7 years; LVEF 46 ± 16%). All participants underwent 12-lead ECG, cardiac CT or MRI, and 128-electrode body surface mapping (BioSemi ActiveTwo, Netherlands). Non-invasive voltage and activation maps were reconstructed using the open-source SCIRun (University of Utah) inverse problem-solving environment. RESULTS: In the epicardial basal anterior segment, HCM patients had the greatest ventricular activation dispersion [16.4 ± 5.5 vs. 13.1 ± 2.7 (ICM with VT) vs. 13.8 ± 4.3 (ICM no VT) vs. 8.1 ± 2.4 ms (Healthy); P = 0.0007], the largest unipolar voltage [1094 ± 211 vs. 934 ± 189 (ICM with VT) vs. 898 ± 358 (ICM no VT) vs. 842 ± 90 µV (Healthy); P = 0.023], and the greatest voltage dispersion [median (interquartile range) 215 (161-281) vs. 189 (143-208) (ICM with VT) vs. 158 (109-236) (ICM no VT) vs. 110 (106-168) µV (Healthy); P = 0.041]. Differences were also observed in other endo-and epicardial basal and apical segments. CONCLUSION: HCM is characterized by a greater activation dispersion in basal segments, a larger voltage, and a larger voltage dispersion through LV. CLINICAL TRIAL REGISTRATION: www.clinicaltrials.gov Unique identifier: NCT02806479.

19.
Front Physiol ; 10: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804799

RESUMO

Electrocardiography provides some information useful for ischemic diagnosis. However, more recently there has been substantial growth in the area of ECG imaging, which by solving the inverse problem of electrocardiography aims to produce high-resolution mapping of the electrical and magnetic dynamics of the heart. Most inverse studies use the full resolution of the body surface potential (BSP) to reconstruct the epicardial potentials, however using a limited number of torso electrodes to interpolate the BSP is more clinically relevant and has an important effect on the reconstruction which must be quantified. A circular ischemic lesion on the right ventricle lateral wall 27 mm in radius is reconstructed using three Tikhonov methods along with 6 different electrode configurations ranging from 32 leads to 1,024 leads. The 2nd order Tikhonov solution performed the most accurately (~80% lesion identified) followed by the 1st (~50% lesion identified) and then the 0 order Tikhonov solution performed the worst with a maximum of ~30% lesion identified regardless of how many leads were used. With an increasing number of leads the solution produces less error, and the error becomes more localised around the lesion for all three regularisation methods. In noisy conditions, the relative performance gap of the 1st and 2nd order Tikhonov solutions was reduced, and determining an accurate regularisation parameter became relatively more difficult. Lesions located on the left ventricle walls were also able to be identified but comparatively to the right ventricle lateral wall performed marginally worse with lesions located on the interventricular septum being able to be indicated by the reconstructions but not successfully identified against the error. The quality of reconstruction was found to decrease as the lesion radius decreased, with a lesion radius of <20 mm becoming difficult to correctly identify against the error even when using >512 torso electrodes.

20.
Comput Biol Med ; 104: 127-138, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472495

RESUMO

AIM: Our goal was to investigate the effect of a global XYZ median beat construction and the heart vector origin point definition on predictive accuracy of ECG biomarkers of sudden cardiac death (SCD). METHODS: Atherosclerosis Risk In Community study participants with analyzable digital ECGs were included (n = 15,768; 55% female, 73% white, mean age 54.2 ±â€¯5.8 y). We developed an algorithm to automatically detect the heart vector origin point on a median beat. Three different approaches to construct a global XYZ beat and two methods to locate origin point were compared. Global electrical heterogeneity was measured by sum absolute QRST integral (SAI QRST), spatial QRS-T angle, and spatial ventricular gradient (SVG) magnitude, azimuth, and elevation. Adjudicated SCD served as the primary outcome. RESULTS: There was high intra-observer (kappa 0.972) and inter-observer (kappa 0.984) agreement in a heart vector origin definition between an automated algorithm and a human. QRS was wider in a median beat that was constructed using R-peak alignment than in time-coherent beat (88.1 ±â€¯16.7 vs. 83.7 ±â€¯15.9 ms; P < 0.0001), and on a median beat constructed using QRS-onset as a zeroed baseline, vs. isoelectric origin point (86.7 ±â€¯15.9 vs. 83.7 ±â€¯15.9 ms; P < 0.0001). ROC AUC was significantly larger for QRS, QT, peak QRS-T angle, SVG elevation, and SAI QRST if measured on a time-coherent median beat, and for SAI QRST and SVG magnitude if measured on a median beat using isoelectric origin point. CONCLUSION: Time-coherent global XYZ median beat with physiologically meaningful definition of the heart vector's origin point improved predictive accuracy of SCD biomarkers.


Assuntos
Algoritmos , Aterosclerose/fisiopatologia , Processamento de Sinais Assistido por Computador , Vetorcardiografia , Morte Súbita Cardíaca , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA