Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273540

RESUMO

Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time- and mass-dependent, non-linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2 ], methane [CH4 ]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2 ] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus-loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned-detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long-term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15 N-labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Dióxido de Carbono , Florestas
2.
Environ Microbiol ; 23(6): 2765-2781, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32869485

RESUMO

Oceanic oxygen minimum zones (OMZs) play a pivotal role in biogeochemical cycles due to extensive microbial activity. How OMZ microbial communities assemble and respond to environmental variation is therefore essential to understanding OMZ functioning and ocean biogeochemistry. Sampling along depth profiles at five stations in the eastern tropical North Pacific Ocean (ETNP), we captured systematic variations in dissolved oxygen (DO) and associated variables (nitrite, chlorophyll, and ammonium) with depth and between stations. We quantitatively analysed relationships between oceanographic gradients and microbial community assembly and activity based on paired 16S rDNA and 16S rRNA sequencing. Overall microbial community composition and diversity were strongly related to regional variations in density, DO, and other variables (regression and redundancy analysis r2  = 0.68-0.82), displaying predictable patterns with depth and between stations. Although similar factors influenced the active community, diversity was substantially lower within the OMZ. We also identified multiple active microbiological networks that tracked specific gradients or features - particularly subsurface ammonium and nitrite maxima. Our findings indicate that overall microbial community assembly is consistently shaped by hydrography and biogeochemistry, while active segments of the community form discrete networks inhabiting distinct portions of the water column, and that both are tightly tuned to environmental conditions in the ETNP.


Assuntos
Microbiota , Oxigênio , Bactérias/genética , Oxigênio/análise , Oceano Pacífico , RNA Ribossômico 16S/genética , Água do Mar
3.
mBio ; 14(5): e0141523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37646528

RESUMO

IMPORTANCE: Understanding how natural selection has historically shaped the traits of microbial populations comprising host microbiomes would help predict how the functions of these microbes may continue to evolve over space and time. Numerous host-associated microbes have been found to adapt to their host, sometimes becoming obligate symbionts, whereas free-living microbes are best known to adapt to their surrounding environment. Our study assessed the selective pressures of both the host environment and the surrounding external environment in shaping the functional potential of host-associated bacteria. Despite residing within the resource-rich microbiome of their hosts, we demonstrate that host-associated heterotrophic bacteria show evidence of trait selection that matches the nutrient availability of their broader surrounding environment. These findings illustrate the complex mix of selective pressures that likely shape the present-day function of bacteria found inhabiting host microbiomes. Our study lends insight into the shifts in function that may occur as environments fluctuate over time.


Assuntos
Microbiota , Bactérias/genética
4.
Nat Commun ; 13(1): 6454, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309500

RESUMO

Aquatic ecosystems are globally significant sources of the greenhouse gas methane to the atmosphere. Until recently, methane production was thought to be a strictly anaerobic process confined primarily to anoxic sediments. However, supersaturation of methane in oxygenated waters has been consistently observed in lakes and the ocean (termed the 'methane paradox'), indicating that methane can be produced under oxic conditions through unclear mechanisms. Here we show aerobic methane production from multiple sources in freshwater incubation experiments under different treatments and based on biogeochemical, metagenomic, and metatranscriptomic data. We find that aerobic methane production appears to be associated with (bacterio)chlorophyll metabolism and photosynthesis, as well as with Proteobacterial degradation of methylphosphonate. Genes encoding pathways for putative photosynthetic- and methylphosphonate-based methane production also co-occur in Proteobacterial metagenome-assembled genomes. Our findings provide insight into known mechanisms of aerobic methane production, and suggest a potential co-occurring mechanism associated with bacterial photosynthesis in aquatic ecosystems.


Assuntos
Ecossistema , Lagos , Lagos/microbiologia , Metano/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA