RESUMO
Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein, which is essential for the control of reactive oxygen species homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy. Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.
Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Animais , Camundongos , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Células HeLa , Ataxia/genética , Mutação , Proteínas Mitocondriais/genéticaRESUMO
BACKGROUND: Defects in GNAO1, the gene encoding the major neuronal G-protein Gαo, are related to neurodevelopmental disorders, epilepsy, and movement disorders. Nevertheless, there is a poor understanding of how molecular mechanisms explain the different phenotypes. OBJECTIVES: We aimed to analyze the clinical phenotype and the molecular characterization of GNAO1-related disorders. METHODS: Patients were recruited in collaboration with the Spanish GNAO1 Association. For patient phenotyping, direct clinical evaluation, analysis of homemade-videos, and an online questionnaire completed by families were analyzed. We studied Gαo cellular expression, the interactions of the partner proteins, and binding to guanosine triphosphate (GTP) and G-protein-coupled receptors (GPCRs). RESULTS: Eighteen patients with GNAO1 genetic defects had a complex neurodevelopmental disorder, epilepsy, central hypotonia, and movement disorders. Eleven patients showed neurological deterioration, recurrent hyperkinetic crisis with partial recovery, and secondary complications leading to death in three cases. Deep brain stimulation improved hyperkinetic crisis, but had inconsistent benefits in dystonia. The molecular defects caused by pathogenic Gαo were aberrant GTP binding and hydrolysis activities, an inability to interact with cellular binding partners, and reduced coupling to GPCRs. Decreased localization of Gαo in the plasma membrane was correlated with the phenotype of "developmental and epileptic encephalopathy 17." We observed a genotype-phenotype correlation, pathogenic variants in position 203 were related to developmental and epileptic encephalopathy, whereas those in position 209 were related to neurodevelopmental disorder with involuntary movements. Milder phenotypes were associated with other molecular defects such as del.16q12.2q21 and I344del. CONCLUSION: We highlight the complexity of the motor phenotype, which is characterized by fluctuations throughout the day, and hyperkinetic crisis with a distinct post-hyperkinetic crisis state. We confirm a molecular-based genotype-phenotype correlation for specific variants. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Transtornos dos Movimentos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Epilepsia/genética , Estudos de Associação Genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Transtornos dos Movimentos/genética , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
BACKGROUND/OBJECTIVES: Exome sequencing may identify pathogenic variants unrelated with the purpose of the analysis. We investigated the frequency of secondary and incidental findings (SF/IF) in cancer susceptibility genes (CSG), their clinical actionability and the psychological impact in individuals with an SF/IF (cases) compared with individuals tested due to their cancer history (controls). METHODS: This study analysed 533 exomes ordered for non-cancer conditions. Medical records were reviewed for clinical actionability of SF/IF. Psychological impact was analysed using the Multidimensional Impact of Cancer Risk Assessment (MICRA) scale and compared between cases and controls with a propensity score weighting method. RESULTS: The frequency of SF/IF in CSG was 2.1% (95% CI 1.1% to 3.8%): three BRCA2, three PMS2, two SDHB, and one each in BRCA1, MLH1 and RAD51C. Among the relatives, 18 were carriers. Twenty enrolled for surveillance, and a neoplasm was diagnosed in 20%: three paragangliomas and one breast cancer. Cases presented higher MICRA mean scores than controls (21.3 vs 16.2 in MICRA total score, 6.3 vs 4.2 in the distress subscale, and 8.3 vs 6.6 in the uncertainty subscale; all p<0.001). CONCLUSION: SF/IF in CSG were identified in 2.1% of patients. Despite a numerically higher psychological impact, the identification of SF/IF allowed early detection and cancer prevention in families without cancer history.
Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Humanos , Feminino , Sequenciamento do Exoma , Achados Incidentais , Neoplasias da Mama/genética , Genes BRCA2RESUMO
AIM: To evaluate early dystonic features in children and adolescents with SGCE-myoclonus-dystonia. METHOD: In this cross-sectional study, 49 patients (26 females and 23 males) with SGCE-myoclonus-dystonia (aged 15y 2mo, SD 12y) with childhood-onset (2y 10mo, SD 1y 10mo) dystonia were examined using a standardized video recorded protocol. Dystonia was rated using the Writer's Cramp and Gait Dystonia Rating Scales. Disability and impairment for handwriting and walking were also rated. RESULTS: Dystonia was present at rest (n=1), posture (n=12), and during specific motor tasks (n=45) such as writing (n=35), walking (n=23), and running (n=20). Most children reported disability while performing these tasks. Early dystonic patterns were identified for writer's cramp and gait dystonia, the latter named the 'circular shaking leg', 'dragging leg', and 'hobby-horse gait' patterns. Sensory tricks were used by five and eight children to improve dystonia and myoclonus during writing and walking respectively. The rating scales accurately measured the severity of action dystonia and correlated with self-reported disability. INTERPRETATION: Children with SGCE-myoclonus-dystonia show recognizable dystonic patterns and sensory tricks that may lead to an early diagnosis and timely therapeutic approach. Isolated writer's cramp is a key feature in childhood and should prompt SCGE analysis. The proposed action dystonia scales could be used to monitor disease course and response to treatment. WHAT THIS PAPER ADDS: Most children with SGCE-myoclonus-dystonia got writer's cramp and had walking and running dystonia. Writer's cramp was a key feature and should prompt SGCE genetic investigation. 'Circular shaking leg', 'dragging leg', and 'hobby-horse gait' were recognized as early gait patterns. Children used sensory tricks to improve myoclonus and dystonia, suggesting common pathophysiological mechanisms. Action dystonia rating scales are valid tools to assess severity in children.
Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Mioclonia , Criança , Feminino , Humanos , Masculino , Estudos Transversais , Distonia/diagnóstico , Distúrbios Distônicos/diagnóstico , Mioclonia/diagnóstico , Mioclonia/genética , Sarcoglicanas/genéticaRESUMO
BACKGROUND AND OBJECTIVE: The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. METHODS: Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. RESULTS: One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. CONCLUSIONS: This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Coreia , Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Criança , Humanos , Hipercinese , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/diagnóstico , Distúrbios Distônicos/genética , Coreia/diagnóstico , Coreia/genética , Proteínas do Tecido Nervoso , Fatores de Transcrição Forkhead , Diester Fosfórico Hidrolases , ATPase Trocadora de Sódio-Potássio , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genéticaRESUMO
AIM: To correlate clinical, radiological, and biochemical features with genetic findings in children with bilateral basal ganglia lesions of unknown aetiology, and propose a diagnostic algorithm for early recognition. METHOD: Children with basal ganglia disease were recruited in a 2-year prospective multicentre study for clinical, biomarker, and genetic studies. Radiological pattern recognition was examined by hierarchical clustering analysis. RESULTS: We identified 22 genetic conditions in 30 out of 62 paediatric patients (37 males, 25 females; mean age at onset 2y, SD 3; range 0-10y; mean age at assessment 11y, range 1-25y) through gene panels (n=11), whole-exome sequencing (n=13), and mitochondrial DNA (mtDNA) sequencing (n=6). Genetic aetiologies included mitochondrial diseases (57%), Aicardi-Goutières syndrome (20%), and monogenic causes of dystonia and/or epilepsy (17%) mimicking Leigh syndrome. Radiological abnormalities included T2-hyperintense lesions (n=26) and lesions caused by calcium or manganese mineralization (n=9). Three clusters were identified: the pallidal, neostriatal, and striatal, plus the last including mtDNA defects in the oxidative phosphorylation system with prominent brain atrophy. Mitochondrial biomarkers showed poor sensitivity and specificity in children with mitochondrial disease, whereas interferon signature was observed in all patients with patients with Aicardi-Goutières syndrome. INTERPRETATION: Combined whole-exome and mtDNA sequencing allowed the identification of several genetic conditions affecting basal ganglia metabolism. We propose a diagnostic algorithm which prioritizes early use of next-generation sequencing on the basis of three clusters of basal ganglia lesions.
Assuntos
Doenças dos Gânglios da Base , Doenças Mitocondriais , Doenças Autoimunes do Sistema Nervoso , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/genética , Criança , Pré-Escolar , DNA Mitocondrial , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação , Malformações do Sistema Nervoso , Estudos ProspectivosRESUMO
Our clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.
Assuntos
Transtornos dos Movimentos , Doenças Neurodegenerativas , Ataxia/genética , Encéfalo , Humanos , Ferro , Cinesinas , Mutação , Doenças Neurodegenerativas/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) currently has no approved treatments. OBJECTIVES: The Fosmetpantotenate Replacement Therapy pivotal trial examined whether treatment with fosmetpantotenate improves PKAN symptoms and stabilizes disease progression. METHODS: This randomized, double-blind, placebo-controlled, multicenter study evaluated fosmetpantotenate, 300 mg oral dose three times daily, versus placebo over a 24-week double-blind period. Patients with pathogenic variants of PANK2, aged 6 to 65 years, with a score ≥6 on the PKAN-Activities of Daily Living (PKAN-ADL) scale were enrolled. Patients were randomized to active (fosmetpantotenate) or placebo treatment, stratified by weight and age. The primary efficacy endpoint was change from baseline at week 24 in PKAN-ADL. RESULTS: Between July 23, 2017, and December 18, 2018, 84 patients were randomized (fosmetpantotenate: n = 41; placebo: n = 43); all 84 patients were included in the analyses. Six patients in the placebo group discontinued treatment; two had worsening dystonia, two had poor compliance, and two died of PKAN-related complications (aspiration during feeding and disease progression with respiratory failure, respectively). Fosmetpantotenate and placebo group PKAN-ADL mean (standard deviation) scores were 28.2 (11.4) and 27.4 (11.5) at baseline, respectively, and were 26.9 (12.5) and 24.5 (11.8) at week 24, respectively. The difference in least square mean (95% confidence interval) at week 24 between fosmetpantotenate and placebo was -0.09 (-1.69 to 1.51; P = 0.9115). The overall incidence of treatment-emergent serious adverse events was similar in the fosmetpantotenate (8/41; 19.5%) and placebo (6/43; 14.0%) groups. CONCLUSIONS: Treatment with fosmetpantotenate was safe but did not improve function assessed by the PKAN-ADL in patients with PKAN. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Atividades Cotidianas , Método Duplo-Cego , Humanos , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Ácido Pantotênico/análogos & derivadosRESUMO
The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.
Assuntos
Anormalidades Múltiplas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Distonia/genética , Enoil-CoA Hidratase/genética , Doença de Leigh/genética , Tioléster Hidrolases/deficiência , Valina/metabolismo , Encéfalo/diagnóstico por imagem , Pré-Escolar , Distonia/diagnóstico , Enoil-CoA Hidratase/deficiência , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Internacionalidade , Doença de Leigh/diagnóstico , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Redes e Vias Metabólicas/genética , Mutação , Fenótipo , Taxa de Sobrevida , Tioléster Hidrolases/genéticaRESUMO
(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by ß-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cognitive deficits. Both probands presented with progressive global cerebellar volume loss in consecutive cerebral magnetic resonance imaging studies, characterized by decreasing midsagittal vermis relative diameter measurements. Cortical hyperintensities were observed on fluid-attenuated inversion recovery (FLAIR) images, suggesting a neurodegenerative process. Each patient carried a novel de novo SPTBN2 substitution: c.193A > G (p.K65E) or c.764A > G (p.D255G). Modeling and protein expression revealed that both mutations might be deleterious. (4) Conclusions: The reported findings contribute to a better understanding of the SPTBN2-associated phenotype. The mutations may preclude proper structural organization of the actin spectrin-based membrane skeleton, which, in turn, is responsible for the underlying disease mechanism.
Assuntos
Ataxia Cerebelar/patologia , Mutação , Doenças Neurodegenerativas/patologia , Espectrina/genética , Idade de Início , Sequência de Aminoácidos , Ataxia Cerebelar/complicações , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Criança , Estudos de Coortes , Estudos de Associação Genética , Humanos , Masculino , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Neuroimagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Espectrina/química , Espectrina/metabolismo , SíndromeRESUMO
IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.
Assuntos
Mutação com Ganho de Função , Estudos de Associação Genética , Genótipo , Helicase IFIH1 Induzida por Interferon/genética , Fenótipo , Alelos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Helicase IFIH1 Induzida por Interferon/química , Masculino , Modelos Moleculares , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Juvenile forms of parkinsonism are rare conditions with onset of bradykinesia, tremor and rigidity before the age of 21 years. These atypical presentations commonly have a genetic aetiology, highlighting important insights into underlying pathophysiology. Genetic defects may affect key proteins of the endocytic pathway and clathrin-mediated endocytosis (CME), as in DNAJC6-related juvenile parkinsonism. OBJECTIVE: To report on a new patient cohort with juvenile-onset DNAJC6 parkinsonism-dystonia and determine the functional consequences on auxilin and dopamine homeostasis. METHODS: Twenty-five children with juvenile parkinsonism were identified from a research cohort of patients with undiagnosed pediatric movement disorders. Molecular genetic investigations included autozygosity mapping studies and whole-exome sequencing. Patient fibroblasts and CSF were analyzed for auxilin, cyclin G-associated kinase and synaptic proteins. RESULTS: We identified 6 patients harboring previously unreported, homozygous nonsense DNAJC6 mutations. All presented with neurodevelopmental delay in infancy, progressive parkinsonism, and neurological regression in childhood. 123 I-FP-CIT SPECT (DaTScan) was performed in 3 patients and demonstrated reduced or absent tracer uptake in the basal ganglia. CSF neurotransmitter analysis revealed an isolated reduction of homovanillic acid. Auxilin levels were significantly reduced in both patient fibroblasts and CSF. Cyclin G-associated kinase levels in CSF were significantly increased, whereas a number of presynaptic dopaminergic proteins were reduced. CONCLUSIONS: DNAJC6 is an emerging cause of recessive juvenile parkinsonism-dystonia. DNAJC6 encodes the cochaperone protein auxilin, involved in CME of synaptic vesicles. The observed dopamine dyshomeostasis in patients is likely to be multifactorial, secondary to auxilin deficiency and/or neurodegeneration. Increased patient CSF cyclin G-associated kinase, in tandem with reduced auxilin levels, suggests a possible compensatory role of cyclin G-associated kinase, as observed in the auxilin knockout mouse. DNAJC6 parkinsonism-dystonia should be considered as a differential diagnosis for pediatric neurotransmitter disorders associated with low homovanillic acid levels. Future research in elucidating disease pathogenesis will aid the development of better treatments for this pharmacoresistant disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Distonia , Transtornos Parkinsonianos , Criança , Dopamina , Distonia/diagnóstico por imagem , Distonia/genética , Proteínas de Choque Térmico HSP40/genética , Homeostase , Humanos , Mutação/genética , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genéticaRESUMO
INTRODUCTION: Phosphomannomutase-2 deficiency (PMM2-CDG) is associated with a recognisable facial pattern. There are no early severity predictors for this disorder and no phenotype-genotype correlation. We performed a detailed dysmorphology evaluation to describe facial gestalt and its changes over time, to train digital recognition facial analysis tools and to identify early severity predictors. METHODS: Paediatric PMM2-CDG patients were evaluated and compared with controls. A computer-assisted recognition tool was trained. Through the evaluation of dysmorphic features (DFs), a simple categorisation was created and correlated with clinical and neurological scores, and neuroimaging. RESULTS: Dysmorphology analysis of 31 patients (4-19 years of age) identified eight major DFs (strabismus, upslanted eyes, long fingers, lipodystrophy, wide mouth, inverted nipples, long philtrum and joint laxity) with predictive value using receiver operating characteristic (ROC) curveanalysis (p<0.001). Dysmorphology categorisation using lipodystrophy and inverted nipples was employed to divide patients into three groups that are correlated with global clinical and neurological scores, and neuroimaging (p=0.005, 0.003 and 0.002, respectively). After Face2Gene training, PMM2-CDG patients were correctly identified at different ages. CONCLUSIONS: PMM2-CDG patients' DFs are consistent and inform about clinical severity when no clear phenotype-genotype correlation is known. We propose a classification of DFs into major and minor with diagnostic risk implications. At present, Face2Gene is useful to suggest PMM2-CDG. Regarding the prognostic value of DFs, we elaborated a simple severity dysmorphology categorisation with predictive value, and we identified five major DFs associated with clinical severity. Both dysmorphology and digital analysis may help physicians to diagnose PMM2-CDG sooner.
Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Fosfotransferases (Fosfomutases)/deficiência , Adolescente , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Curva ROC , Espanha , Adulto JovemRESUMO
AIM: To perform a deep phenotype characterisation in a pedigree of 3 siblings with Leigh syndrome and compound heterozygous NDUFAF6 mutations. METHOD: A multi-gene panel of childhood-onset basal ganglia neurodegeneration inherited conditions was analysed followed by functional studies in fibroblasts. RESULTS: Three siblings developed gait dystonia in infancy followed by rapid progression to generalised dystonia and psychomotor regression. Brain magnetic resonance showed symmetric and bilateral cytotoxic lesions in the putamen and proliferation of the lenticular-striate arteries, latter spreading to the caudate and progressing to cavitation and volume loss. We identified a frameshift novel change (c.554_558delTTCTT; p.Tyr187AsnfsTer65) and a pathogenic missense change (c.371T>C; p.Ile124Thr) in the NDUFAF6 gene, which segregated with an autosomal recessive inheritance within the family. Patient mutations were associated with the absence of the NDUFAF6 protein and reduced activity and assembly of mature complex I in fibroblasts. By functional complementation assay, the mutant phenotype was rescued by the canonical version of the NDUFAF6. A literature review of 14 NDUFAF6 patients showed a consistent phenotype of an early childhood insidious onset neurological regression with prominent dystonia associated with basal ganglia degeneration and long survival. INTERPRETATION: NDUFAF6-related Leigh syndrome is a relevant cause of childhood onset dystonia and isolated bilateral striatal necrosis. By genetic complementation, we could demonstrate the pathogenicity of novel genetic variants in NDUFAF6.
Assuntos
Distúrbios Distônicos/genética , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Proteínas Mitocondriais/genética , Degeneração Estriatonigral/congênito , Biópsia , Criança , Estudos de Coortes , Feminino , Fibroblastos , Expressão Gênica , Variação Genética , Humanos , Doença de Leigh/complicações , Masculino , Músculos/patologia , Mutação , Linhagem , Irmãos , Degeneração Estriatonigral/genéticaRESUMO
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.
Assuntos
Proteínas de Membrana Transportadoras/deficiência , Deficiência de Tiamina/genética , Tiamina/metabolismo , Anemia Megaloblástica , Transporte Biológico , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Diabetes Mellitus , Perda Auditiva Neurossensorial , Humanos , Doença de Leigh , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fenótipo , Tiamina/líquido cefalorraquidiano , Tiamina/uso terapêutico , Deficiência de Tiamina/congênito , Deficiência de Tiamina/tratamento farmacológico , Tiamina Pirofosfato/metabolismoRESUMO
BACKGROUND/AIMS: Pantothenate kinase-associated neurodegeneration is a rare neurodegenerative disease with a variable clinical phenotype. Fosmetpantotenate is in clinical development as a replacement therapy that targets the underlying cause of pantothenate kinase-associated neurodegeneration. The FOsmetpantotenate Replacement Therapy pivotal trial-an ongoing phase 3, randomized, double-blind, placebo-controlled, multicenter trial-examines the efficacy and safety of fosmetpantotenate in patients with pantothenate kinase-associated neurodegeneration aged 6-65 years. The FOsmetpantotenate Replacement Therapy trial required the development and validation of a novel patient-reported outcome measure specifically relevant to pantothenate kinase-associated neurodegeneration. The Pantothenate Kinase-Associated Neurodegeneration-Activities of Daily Living scale was developed to assess activities of daily living related to motor functioning in patients with pantothenate kinase-associated neurodegeneration to evaluate clinically meaningful change as the primary efficacy endpoint in clinical trials. This article describes the design of the FOsmetpantotenate Replacement Therapy pivotal trial and the development of the Pantothenate Kinase-Associated Neurodegeneration-Activities of Daily Living scale. METHODS: A systematic, iterative process consistent with the US Food and Drug Administration guidance and advice from the Committee for Medicinal Products for Human Use at the European Medicines Agency was used to evaluate and adapt or remove scale items of an existing widely used instrument for movement disorders to be pantothenate kinase-associated neurodegeneration-specific, and to create new items. Modification of scale items was based on input from international experts, patient advocacy leaders, and primary caregivers. A clinimetric study of the Pantothenate Kinase-Associated Neurodegeneration-Activities of Daily Living scale conducted in patients with pantothenate kinase-associated neurodegeneration or their caregivers (N = 40 at first assessment; N = 39 at second assessment) demonstrated high content and construct validity and excellent test-retest reliability over an approximately 2-week period. The Pantothenate Kinase-Associated Neurodegeneration-Activities of Daily Living scale was developed to be broadly useful within clinical and research settings in the examination of patient response to pantothenate kinase-associated neurodegeneration therapies. RESULTS: Approximately 82 patients will be enrolled in the ongoing FOsmetpantotenate Replacement Therapy pivotal trial. Change from baseline in Pantothenate Kinase-Associated Neurodegeneration-Activities of Daily Living score over the 24-week double-blind period is the primary efficacy endpoint for the FOsmetpantotenate Replacement Therapy trial. Treatment effect will be evaluated using a mixed model for repeated measures analysis to assess data from all visits simultaneously. CONCLUSION: The development and implementation of the Pantothenate Kinase-Associated Neurodegeneration-Activities of Daily Living scale in the FOsmetpantotenate Replacement Therapy trial illustrates the feasibility and potential patient benefit of putting into practice the current regulatory guidance on the use of patient-reported outcomes in clinical trials. These processes can be broadly applied to clinical trial methodology that requires newly created or revised patient-reported outcome measures to evaluate outcome change as a primary efficacy endpoint. The goal of such measures in patients with pantothenate kinase-associated neurodegeneration is to facilitate development of disease-modifying therapeutics in multiple drug development programs.
Assuntos
Atividades Cotidianas , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Ácido Pantotênico/análogos & derivados , Medidas de Resultados Relatados pelo Paciente , Complexo Vitamínico B/uso terapêutico , Adolescente , Adulto , Idoso , Criança , Ensaios Clínicos Fase III como Assunto , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Ácido Pantotênico/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Resultado do Tratamento , Adulto JovemRESUMO
Hyaline fibromatosis syndrome (HFS) is the unifying term for infantile systemic hyalinosis and juvenile hyaline fibromatosis. HFS is a rare autosomal recessive disorder of the connective tissue caused by mutations in the gene for anthrax toxin receptor-2 (ANTXR2). It is characterized by abnormal growth of hyalinized fibrous tissue with cutaneous, mucosal, osteoarticular, and systemic involvement. We reviewed the 84 published cases and their molecular findings, aiming to gain insight into the clinical features, prognostic factors, and phenotype-genotype correlations. Extreme pain at minimal handling in a newborn is the presentation pattern most frequently seen in grade 4 patients (life-limiting disease). Gingival hypertrophy and subcutaneous nodules are some of the disease hallmarks. Though painful joint stiffness and contractures are almost universal, weakness and hypotonia may also be present. Causes of death are intractable diarrhea, recurrent infections, and organ failure. Median age of death of grade 4 cases is 15.0 months (p25-p75: 9.5-24.0). This review provides evidence to reinforce the previous hypothesis that missense mutations in exons 1-12 and mutations leading to a premature stop codon lead to the severe form of the disease, while missense pathogenic variants in exons 13-17 lead to the mild form of the disease. Multidisciplinary team approach is recommended.
Assuntos
Síndrome da Fibromatose Hialina/complicações , Síndrome da Fibromatose Hialina/mortalidade , Mutação de Sentido Incorreto , Receptores de Peptídeos/genética , Feminino , Humanos , Síndrome da Fibromatose Hialina/genética , Lactente , Comunicação Interdisciplinar , Síndromes de Malabsorção/etiologia , Masculino , Microvilosidades/patologia , Mucolipidoses/etiologia , Insuficiência de Múltiplos Órgãos/etiologia , Dor/etiologia , Dor/genética , Fenótipo , Prognóstico , Doenças Raras/genéticaRESUMO
Primary and secondary conditions leading to thiamine deficiency have overlapping features in children, presenting with acute episodes of encephalopathy, bilateral symmetric brain lesions, and high excretion of organic acids that are specific of thiamine-dependent mitochondrial enzymes, mainly lactate, alpha-ketoglutarate, and branched chain keto-acids. Undiagnosed and untreated thiamine deficiencies are often fatal or lead to severe sequelae. Herein, we describe the clinical and genetic characterization of 79 patients with inherited thiamine defects causing encephalopathy in childhood, identifying outcome predictors in patients with pathogenic SLC19A3 variants, the most common genetic etiology. We propose diagnostic criteria that will aid clinicians to establish a faster and accurate diagnosis so that early vitamin supplementation is considered. Ann Neurol 2017;82:317-330.
Assuntos
Deficiência de Tiamina/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Mutação , Prognóstico , Taxa de Sobrevida , Deficiência de Tiamina/mortalidade , Adulto JovemRESUMO
BACKGROUND: We investigated a family that presented with an infantile-onset chorea-predominant movement disorder, negative for NKX2-1, ADCY5, and PDE10A mutations. METHODS: Phenotypic characterization and trio whole-exome sequencing was carried out in the family. RESULTS: We identified a homozygous mutation affecting the GAF-B domain of the 3',5'-cyclic nucleotide phosphodiesterase PDE2A gene (c.1439A>G; p.Asp480Gly) as the candidate novel genetic cause of chorea in the proband. PDE2A hydrolyzes cyclic adenosine/guanosine monophosphate and is highly expressed in striatal medium spiny neurons. We functionally characterized the p.Asp480Gly mutation and found that it severely decreases the enzymatic activity of PDE2A. In addition, we showed equivalent expression in human and mouse striatum of PDE2A and its homolog gene, PDE10A. CONCLUSIONS: We identified a loss-of-function homozygous mutation in PDE2A associated to early-onset chorea. Our findings possibly strengthen the role of cyclic adenosine monophosphate and cyclic guanosine monophosphate metabolism in striatal medium spiny neurons as a crucial pathophysiological mechanism in hyperkinetic movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Coreia/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Mutação/genética , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Saúde da Família , Testes Genéticos , Humanos , Masculino , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , RNA Mensageiro/metabolismoRESUMO
Phosphomannomutase deficiency (PMM2-CDG) causes a cerebellar syndrome that has been evaluated using the International Cooperative Ataxia Rating Scale (ICARS). However, no particular dysarthria tests have been used. Speech ICARS subscore subjectively assesses fluency and clarity of speech with two items. Repetition of syllables, traditionally used for characterization of ataxic speech, was validated in early-onset ataxia conditions. We assess the validity of the PATA test (SCA Functional Index [SCAFI]) in PMM2-CDG patients.PATA rates from 20 patients were compared with a control population were and correlated with ICARS and neuroimaging.There was a difference between the PATA rate in patients and controls. PATA rate increased with age in controls. In patients, the improvement of PATA rate with age was not significant. In patients, the PATA rate was negatively correlated with the total ICARS score and the Speech ICARS subscore. Regarding neuroimaging, midsaggital vermis relative diameter was positively correlated with PATA results. These last differences were also significant when the results are corrected by age.PATA rate provides an easy measure for a quantitative assessment of dysarthria that may help clinicians to monitor patients' evolution in a regular consultation. It could also be used in PMM2-CDG clinical trials implementing ICARS speech subscore information.