Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 98(11): 2979, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857166

RESUMO

Our understanding of mammal ecology has always been hindered by the difficulties of observing species in closed tropical forests. Camera trapping has become a major advance for monitoring terrestrial mammals in biodiversity rich ecosystems. Here we compiled one of the largest datasets of inventories of terrestrial mammal communities for the Neotropical region based on camera trapping studies. The dataset comprises 170 surveys of medium to large terrestrial mammals using camera traps conducted in 144 areas by 74 studies, covering six vegetation types of tropical and subtropical Atlantic Forest of South America (Brazil and Argentina), and present data on species composition and richness. The complete dataset comprises 53,438 independent records of 83 species of mammals, includes 10 species of marsupials, 15 rodents, 20 carnivores, eight ungulates and six armadillos. Species richness averaged 13 species (±6.07 SD) per site. Only six species occurred in more than 50% of the sites: the domestic dog Canis familiaris, crab-eating fox Cerdocyon thous, tayra Eira barbara, south American coati Nasua nasua, crab-eating raccoon Procyon cancrivorus and the nine-banded armadillo Dasypus novemcinctus. The information contained in this dataset can be used to understand macroecological patterns of biodiversity, community, and population structure, but also to evaluate the ecological consequences of fragmentation, defaunation, and trophic interactions.


Assuntos
Biodiversidade , Florestas , Mamíferos/fisiologia , Animais , Argentina , Brasil , Cães , Ecossistema
2.
PLoS One ; 11(12): e0167372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27973584

RESUMO

Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.


Assuntos
Conservação dos Recursos Naturais , Florestas , Panthera/fisiologia , Animais , Brasil , Ecossistema
3.
PLoS One ; 11(3): e0151814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27002524

RESUMO

Large cats feeding habits have been studied through two main methods: scat analysis and the carcasses of prey killed by monitored animals. From November 2001 to April 2004, we studied jaguar predation patterns using GPS telemetry location clusters on a cattle ranch in southern Pantanal. During this period, we recorded 431 carcasses of animals preyed upon by monitored jaguars. Concurrently, we collected 125 jaguar scats opportunistically. We compared the frequencies of prey found through each method. We also compared the prey communities using Bray-Curtis similarity coefficient. These comparisons allowed us to evaluate the use of scat analysis as a means to describe jaguar feeding habits. Both approaches identified prey communities with high similarity (Bray-Curtis coefficient > 70). According to either method, jaguars consume three main prey: cattle (Bos taurus), caiman (Caiman yacare) and peccaries (Tayassu pecari and Pecari tajacu). The two methods did not differ in the frequency of the three main prey over dry and wet seasons or years sampled. Our results show that scat analysis is effective and capable of describing jaguar feeding habits.


Assuntos
Comportamento Alimentar , Panthera/fisiologia , Comportamento Predatório , Jacarés e Crocodilos , Animais , Brasil , Bovinos , Feminino , Masculino , Suínos , Telemetria
4.
Sci Rep ; 6: 37147, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27849006

RESUMO

The jaguar is the top predator of the Atlantic Forest (AF), which is a highly threatened biodiversity hotspot that occurs in Brazil, Paraguay and Argentina. By combining data sets from 14 research groups across the region, we determine the population status of the jaguar and propose a spatial prioritization for conservation actions. About 85% of the jaguar's habitat in the AF has been lost and only 7% remains in good condition. Jaguars persist in around 2.8% of the region, and live in very low densities in most of the areas. The population of jaguars in the AF is probably lower than 300 individuals scattered in small sub-populations. We identified seven Jaguar Conservation Units (JCUs) and seven potential JCUs, and only three of these areas may have ≥50 individuals. A connectivity analysis shows that most of the JCUs are isolated. Habitat loss and fragmentation were the major causes for jaguar decline, but human induced mortality is the main threat for the remaining population. We classified areas according to their contribution to jaguar conservation and we recommend management actions for each of them. The methodology in this study could be used for conservation planning of other carnivore species.


Assuntos
Biodiversidade , Florestas , Panthera/fisiologia , Animais , Dinâmica Populacional , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA