Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Genet ; 53(1): 35-48, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34407235

RESUMO

Gene-gene interactions cause hidden genetic variation in natural populations and could be responsible for the lack of replication that is typically observed in complex traits studies. This study aimed to identify gene-gene interactions using the empirical Hilbert-Schmidt Independence Criterion method to test for epistasis in beef fatty acid profile traits of Nellore cattle. The dataset contained records from 963 bulls, genotyped using a 777 962k SNP chip. Meat samples of Longissimus muscle, were taken to measure fatty acid composition, which was quantified by gas chromatography. We chose to work with the sums of saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), omega-3 (OM3), omega-6 (OM6), SFA:PUFA and OM3:OM6 fatty acid ratios. The SNPs in the interactions where P < 10 - 8 were mapped individually and used to search for candidate genes. Totals of 602, 3, 13, 23, 13, 215 and 169 candidate genes for SFAs, MUFAs, PUFAs, OM3s, OM6s and SFA:PUFA and OM3:OM6 ratios were identified respectively. The candidate genes found were associated with cholesterol, lipid regulation, low-density lipoprotein receptors, feed efficiency and inflammatory response. Enrichment analysis revealed 57 significant GO and 18 KEGG terms ( P < 0.05), most of them related to meat quality and complementary terms. Our results showed substantial genetic interactions associated with lipid profile, meat quality, carcass and feed efficiency traits for the first time in Nellore cattle. The knowledge of these SNP-SNP interactions could improve understanding of the genetic and physiological mechanisms that contribute to lipid-related traits and improve human health by the selection of healthier meat products.


Assuntos
Bovinos/genética , Epistasia Genética , Estudo de Associação Genômica Ampla/veterinária , Genoma , Metabolismo dos Lipídeos/genética , Carne Vermelha/análise , Animais , Masculino
2.
Anim Genet ; 48(3): 255-271, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27910110

RESUMO

This review presents a broader approach to the implementation and study of runs of homozygosity (ROH) in animal populations, focusing on identifying and characterizing ROH and their practical implications. ROH are continuous homozygous segments that are common in individuals and populations. The ability of these homozygous segments to give insight into a population's genetic events makes them a useful tool that can provide information about the demographic evolution of a population over time. Furthermore, ROH provide useful information about the genetic relatedness among individuals, helping to minimize the inbreeding rate and also helping to expose deleterious variants in the genome. The frequency, size and distribution of ROH in the genome are influenced by factors such as natural and artificial selection, recombination, linkage disequilibrium, population structure, mutation rate and inbreeding level. Calculating the inbreeding coefficient from molecular information from ROH (FROH ) is more accurate for estimating autozygosity and for detecting both past and more recent inbreeding effects than are estimates from pedigree data (FPED ). The better results of FROH suggest that FROH can be used to infer information about the history and inbreeding levels of a population in the absence of genealogical information. The selection of superior animals has produced large phenotypic changes and has reshaped the ROH patterns in various regions of the genome. Additionally, selection increases homozygosity around the target locus, and deleterious variants are seen to occur more frequently in ROH regions. Studies involving ROH are increasingly common and provide valuable information about how the genome's architecture can disclose a population's genetic background. By revealing the molecular changes in populations over time, genome-wide information is crucial to understanding antecedent genome architecture and, therefore, to maintaining diversity and fitness in endangered livestock breeds.


Assuntos
Genética Populacional , Homozigoto , Endogamia , Gado/genética , Animais , Bovinos , Variação Genética , Cabras , Cavalos , Desequilíbrio de Ligação , Análise de Sequência de DNA , Carneiro Doméstico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA