RESUMO
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Linhagem da Célula/genética , Humanos , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Células-Tronco Pluripotentes/citologiaRESUMO
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide great opportunities for mechanistic dissection of human cardiac pathophysiology; however, hiPSC-CMs remain immature relative to the adult heart. To identify novel signaling pathways driving the maturation process during heart development, we analyzed published transcriptional and epigenetic datasets from hiPSC-CMs and prenatal and postnatal human hearts. These analyses revealed that several components of the MAPK and PI3K-AKT pathways are downregulated in the postnatal heart. Here, we show that dual inhibition of these pathways for only 5 days significantly enhances the maturation of day 30 hiPSC-CMs in many domains: hypertrophy, multinucleation, metabolism, T-tubule density, calcium handling, and electrophysiology, many equivalent to day 60 hiPSC-CMs. These data indicate that the MAPK/PI3K/AKT pathways are involved in cardiomyocyte maturation and provide proof of concept for the manipulation of key signaling pathways for optimal hiPSC-CM maturation, a critical aspect of faithful in vitro modeling of cardiac pathologies and subsequent drug discovery.