Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(7): e28914, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394776

RESUMO

The Omicron variant of concern (VOC) has surged in many countries and replaced the previously reported VOC. To identify different Omicron strains/sublineages on a rapid, convenient, and precise platform, we report a novel multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) method in one tube based on the Omicron lineage sequence variants' information. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subvariants were used in a PCR-based assay for rapid identification of Omicron sublineage genotyping in 1000 clinical samples. Several characteristic mutations were analyzed using specific primers and probes for the spike gene, del69-70, and F486V. To distinguish Omicron sublineages (BA.2, BA.4, and BA.5), the NSP1:141-143del in the ORF1a region and D3N mutation in membrane protein occurring outside the spike protein region were analyzed. Results from the real-time PCR assay for one-tube accuracy were compared to those of whole genome sequencing. The developed PCR assay was used to analyze 400 SARS-CoV-2 positive samples. Ten samples determined as BA.4 were positive for NSP1:141-143del, del69-70, and F486V mutations; 160 BA.5 samples were positive for D3N, del69-70, and F486V mutations, and 230 BA.2 samples were without del69-70. Screening these samples allowed the identification of epidemic trends at different time intervals. Our novel one-tube multiplex PCR assay was effective in identifying Omicron sublineages.


Assuntos
COVID-19 , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Pandemias , Teste para COVID-19 , Reação em Cadeia da Polimerase Multiplex , Glicoproteína da Espícula de Coronavírus
2.
J Formos Med Assoc ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097432

RESUMO

The study aimed to describe respiratory syncytial virus infections among hospitalized adults between January 2021 and February 2023 from a single medical center in Taiwan. Clinical information from infected patients with RSV was via medical charts review. The incidence of RSV during the study period among adult inpatients showed seasonal variation and could be up to around 2 % in peak season. Among 19 patients identified, the major comorbidity was chronic heart disease (10/19; 52.6 %) followed by chronic pulmonary disease (5/19; 26.3 %) and diabetes mellitus (5/19; 26.3 %). A quarter of infected patients required intensive care with overall mortality reached 26.3 % and the readmission rates within 30 days after was 15.8 %. Our study results suggests that RSV infections among adults could cause a substantial disease burden on healthcare systems.

3.
J Antimicrob Chemother ; 74(6): 1503-1510, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830171

RESUMO

BACKGROUND: MDR Elizabethkingia anophelis strains are implicated in an increasing number of healthcare-associated infections worldwide, including a recent cluster of E. anophelis infections in the Midwestern USA associated with significant morbidity and mortality. However, there is minimal information on the antimicrobial susceptibilities of E. anophelis strains or their antimicrobial resistance to carbapenems and fluoroquinolones. OBJECTIVES: Our aim was to examine the susceptibilities and genetic profiles of clinical isolates of E. anophelis from our hospital, characterize their carbapenemase genes and production of MBLs, and determine the mechanism of fluoroquinolone resistance. METHODS: A total of 115 non-duplicated isolates of E. anophelis were examined. MICs of antimicrobial agents were determined using the Sensititre 96-well broth microdilution panel method. QRDR mutations and MBL genes were identified using PCR. MBL production was screened for using a combined disc test. RESULTS: All E. anophelis isolates harboured the blaGOB and blaB genes with resistance to carbapenems. Antibiotic susceptibility testing indicated different resistance patterns to ciprofloxacin and levofloxacin in most isolates. Sequencing analysis confirmed that a concurrent GyrA amino acid substitution (Ser83Ile or Ser83Arg) in the hotspots of respective QRDRs was primarily responsible for high-level ciprofloxacin/levofloxacin resistance. Only one isolate had no mutation but a high fluoroquinolone MIC. CONCLUSIONS: Our study identified a strong correlation between antibiotic susceptibility profiles and mechanisms of fluoroquinolone resistance among carbapenem-resistant E. anophelis isolates, providing an important foundation for continued surveillance and epidemiological analyses of emerging E. anophelis opportunistic infections. Minocycline or ciprofloxacin has the potential for treatment of severe E. anophelis infections.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases/genética , Farmacorresistência Bacteriana , Infecções por Flavobacteriaceae/microbiologia , Flavobacteriaceae/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluoroquinolonas/farmacologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
4.
Eur J Haematol ; 103(1): 47-55, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31063249

RESUMO

BACKGROUND: In 10%-18% of mild-type hemophilia A (HA) patients, mutations cannot be found by routine DNA analysis. OBJECTIVE: We aimed to identify the genetic defects by mRNA analysis of F8 gene in mild HA patients without mutation in exonic DNA. PATIENTS AND METHODS: From 2006 to 2016, we identified F8 exon mutations in 39 of 49 mild HA patients using routine genetic testing. We then evaluated the 10 remaining patients from six unrelated families without exonic DNA mutation by performing cDNA sequence analysis. RESULTS: Nine of the 10 (90%) patients were confirmed to have F8 gene mutation. Eight patients from four unrelated families were notably found to have presence of an aberrant 675-bp fragment. Sequencing of this fragment showed that there were two separate new alternative splicing exons of 35 bp and 55 bp within intron 18, which formed a 90-bp insertion between exon 18 and exon 19 (E18ins90bpE19) in the mRNA. Based on direct sequencing, this alternative splicing transcript appears to have resulted from deep intronic variant c.5999-277G>A of intron 18. CONCLUSIONS: Our study suggests that deep intronic variant of c.5999-277G>A may be a hot spot mutation for mild hemophilia patients without mutation in exonic DNA.


Assuntos
Alelos , Fator VIII/genética , Hemofilia A/sangue , Hemofilia A/genética , Íntrons , Mutação , Fenótipo , Adolescente , Adulto , Idoso , Processamento Alternativo , Sequência de Bases , Criança , Cromossomos Humanos X , Éxons , Estudos de Associação Genética , Genótipo , Haplótipos , Hemofilia A/diagnóstico , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , RNA Mensageiro/genética , Análise de Sequência de DNA , Índice de Gravidade de Doença , Adulto Jovem
5.
J Antimicrob Chemother ; 71(6): 1488-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26850720

RESUMO

OBJECTIVES: Amino acid substitutions within the AdeRS two-component system are believed to result in overexpression of the AdeABC efflux pump and extensive resistance to antibiotics in clinical Acinetobacter baumannii isolates. However, the exact amino acid substitutions in AdeRS that cause overexpression of the AdeABC efflux pump remain unclear. We elucidated the role of amino acid substitutions in AdeRS by a complementation assay in an adeRS knockout strain of A. baumannii. METHODS: Five types of adeRS operon from tigecycline-resistant XDR A. baumannii (XDRAB) were cloned and introduced into the adeRS knockout strain to reverse its tigecycline susceptibility. RESULTS: Through shuffling gene segments among those five adeRS operons and performing site-directed mutagenesis, we found that the specific amino acid substitution Gly186Val in AdeS is crucial for reducing tigecycline susceptibility of A. baumannii. CONCLUSIONS: Our result demonstrates that a critical amino acid substitution in AdeS alters the AdeABC efflux pump-mediated tigecycline resistance of A. baumannii.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Minociclina/análogos & derivados , Embaralhamento de DNA , Técnicas de Inativação de Genes , Teste de Complementação Genética , Minociclina/farmacologia , Mutagênese Sítio-Dirigida , Tigeciclina
6.
J BUON ; 19(2): 459-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24965407

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent a new treatment option for patients with advanced lung adenocarcinoma. In this article we assessed the treatment response and tried to identify prognostic factors which may provide some information different from previously published reports in groups with better performance status (PS) than our enrolled patients. METHODS: The records of 85 patients with EGFR-mutated advanced lung adenocarcinoma who received gefitinib 250 mg once daily as front-line monotherapy between October 2007 and October 2012 were analysed. Direct sequencing methods were used for detecting EGFR mutations. SPSS (version 20) software was used for all data analysis. RESULTS: The median overall survival (OS) and progression free survival (PFS) were 25.6 and 6.9 months, respectively. No statistical significance between the two groups of exon 19 and exon 21 in OS and PFS was registered (p=0.414 and p=0.519, respectively). The group of patients treated > 3 months had a better median OS survival compared with those treated < 3 months (25.6 vs 4.9 months, p<0.001). In multivariate analysis, significant benefit on OS was observed in patients with ECOG PS scores of 0-2 (p=0.002) and those treated for longer time periods (p<0.001), rather than age, sex and smoking. Among the adverse effects (AEs), skin manifestation was correlated with significantly better OS (p=0.007) but insignificant effect on PFS (p=0.131). CONCLUSIONS: Good ECOG PS, longer TKI use and skin rash were significant factors predictive for gefitinib antitumor activity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Adulto , Idoso , Receptores ErbB/genética , Feminino , Gefitinibe , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Quinazolinas/efeitos adversos
7.
Infect Drug Resist ; 17: 2899-2912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005853

RESUMO

Purpose: The World Health Organization has identified Klebsiella pneumoniae (KP) as a significant threat to global public health. The rising threat of carbapenem-resistant Klebsiella pneumoniae (CRKP) leads to prolonged hospital stays and higher medical costs, necessitating faster diagnostic methods. Traditional antibiotic susceptibility testing (AST) methods demand at least 4 days, requiring 3 days on average for culturing and isolating the bacteria and identifying the species using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), plus an extra day for interpreting AST results. This lengthy process makes traditional methods too slow for urgent clinical situations requiring rapid decision-making, potentially hindering prompt treatment decisions, especially for fast-spreading infections such as those caused by CRKP. This research leverages a cutting-edge diagnostic method that utilizes an artificial intelligence-clinical decision support system (AI-CDSS). It incorporates machine learning algorithms for the swift and precise detection of carbapenem-resistant and colistin-resistant strains. Patients and Methods: We selected 4307 KP samples out of a total of 52,827 bacterial samples due to concerns about multi-drug resistance using MALDI-TOF MS and Vitek-2 systems for AST. It involved thorough data preprocessing, feature extraction, and machine learning model training fine-tuned with GridSearchCV and 5-fold cross-validation, resulting in high predictive accuracy, as demonstrated by the receiver operating characteristic and area under the curve (AUC) scores, laying the groundwork for our AI-CDSS. Results: MALDI-TOF MS analysis revealed distinct intensity profiles differentiating CRKP and susceptible strains, as well as colistin-resistant Klebsiella pneumoniae (CoRKP) and susceptible strains. The Random Forest Classifier demonstrated superior discriminatory power, with an AUC of 0.96 for detecting CRKP and 0.98 for detecting CoRKP. Conclusion: Integrating MALDI-TOF MS with machine learning in an AI-CDSS has greatly expedited the detection of KP resistance by approximately 1 day. This system offers timely guidance, potentially enhancing clinical decision-making and improving treatment outcomes for KP infections.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38909685

RESUMO

OBJECTIVES: The World Health Organization named Stenotrophomonas maltophilia a critical multi-drug resistant threat, necessitating rapid diagnostic strategies. Traditional culturing methods require up to 96 hours, including 72 hours for bacterial growth, identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) through protein profile analysis, and 24 hours for antibiotic susceptibility testing. In this study, we aimed at developing an artificial intelligence-clinical decision support system (AI-CDSS) by integrating MALDI-TOF MS and machine learning to quickly identify levofloxacin and trimethoprim/sulfamethoxazole resistance in S. maltophilia, optimizing treatment decisions. METHODS: We selected 8,662 S. maltophilia from 165,299 MALDI-TOF MS-analyzed bacterial specimens, collected from a major medical center and four secondary hospitals. We exported mass-to-charge values and intensity spectral profiles from MALDI-TOF MS .mzML files to predict antibiotic susceptibility testing results, obtained with the VITEK-2 system using machine learning algorithms. We optimized the models with GridSearchCV and 5-fold cross-validation. RESULTS: We identified distinct spectral differences between resistant and susceptible S. maltophilia strains, demonstrating crucial resistance features. The machine learning models, including random forest, light-gradient boosting machine, and XGBoost, exhibited high accuracy. We established an AI-CDSS to offer healthcare professionals swift, data-driven advice on antibiotic use. CONCLUSIONS: MALDI-TOF MS and machine learning integration into an AI-CDSS significantly improved rapid S. maltophilia resistance detection. This system reduced the identification time of resistant strains from 24 hours to minutes after MALDI-TOF MS identification, providing timely and data-driven guidance. Combining MALDI-TOF MS with machine learning could enhance clinical decision-making and improve S. maltophilia infection treatment outcomes.

9.
Clin Chim Acta ; 560: 119731, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754576

RESUMO

BACKGROUND: The viral load (VL) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals is critical for improving clinical treatment strategies, care, and decisions. Several studies have reported that the initial SARS-CoV-2 VL is associated with disease severity and mortality. Cycle threshold (Ct) values and/or copies/mL are often used to quantify VL. However, a multitude of platforms, primer/probe sets of different SARS-CoV-2 target genes, and reference material manufacturers may cause inconsistent interlaboratory interpretations. The first International Standard for SARS-CoV-2 RNA quantitative assays has allowed diagnostic laboratories to transition SARS-CoV-2 VL results into international units per milliliter (IU/mL). The Cobas SARS-CoV-2 Duo quantitative assay provides VL results expressed in IU/mL. MATERIALS AND METHODS: We enrolled 145 and 50 SARS-CoV-2-positive, hospitalized and 50-negative individuals at the Tri-Service General Hospital, Taiwan from January to May 2022. Each participant's electronic medical record was reviewed to determine asymptomatic, mild, moderate, and severe cases. Nasopharyngeal swabs were collected using universal transport medium. We investigated the association of SARS-CoV-2 VL with disease severity using the Cobas SARS-CoV-2 Duo quantitative assay and its functionality in clinical assessment and decision making to further improve clinical treatment strategies. Limit of detection (LOD) was assessed. RESULTS: All 50 SARS-CoV-2-negative samples confirmed negative for SARS-CoV-2, demonstrating 100 % specificity of the Cobas SARS-CoV-2 Duo assay. Patients with severe symptoms had longer hospital stays, and the length of hospital stay (30.56 days on average) positively correlated with the VL (8.22 ± 1.21 log10 IU/mL). Asymptomatic patients had the lowest VL (5.54 ± 2.06 log10 IU/mL) at admission and the shortest hospital stay (14.1 days on average). CONCLUSIONS: VL is associated with disease severity and duration of hospitalization; therefore, its quantification should be considered when making clinical care decisions and treatment strategies. The Cobas SARS-CoV-2 Duo assay provides a commutable unitage IU/mL for interlaboratory interpretations.


Assuntos
COVID-19 , Progressão da Doença , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , RNA Viral/análise
10.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396454

RESUMO

BACKGROUND: Klebsiella pneumoniae (K. pneumoniae) urinary tract infections pose a significant challenge in Taiwan. The significance of this issue arises because of the growing concerns about the antibiotic resistance of K. pneumoniae. Therefore, this study aimed to uncover potential genomic risk factors in Taiwanese patients with K. pneumoniae urinary tract infections through genome-wide association studies (GWAS). METHODS: Genotyping data are obtained from participants with a history of urinary tract infections enrolled at the Tri-Service General Hospital as part of the Taiwan Precision Medicine Initiative (TPMI). A case-control study employing GWAS is designed to detect potential susceptibility single-nucleotide polymorphisms (SNPs) in patients with K. pneumoniae-related urinary tract infections. The associated genes are determined using a genome browser, and their expression profiles are validated via the GTEx database. The GO, Reactome, DisGeNET, and MalaCards databases are also consulted to determine further connections between biological functions, molecular pathways, and associated diseases between these genes. RESULTS: The results identified 11 genetic variants with higher odds ratios compared to controls. These variants are implicated in processes such as adhesion, protein depolymerization, Ca2+-activated potassium channels, SUMOylation, and protein ubiquitination, which could potentially influence the host immune response. CONCLUSIONS: This study implies that certain risk variants may be linked to K. pneumoniae infections by affecting diverse molecular functions that can potentially impact host immunity. Additional research and follow-up studies are necessary to elucidate the influence of these risk variants on infectious diseases and develop targeted interventions for mitigating the spread of K. pneumoniae urinary tract infections.

11.
Diagnostics (Basel) ; 13(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132252

RESUMO

The emergence of the Omicron (B.1.1.529) variant of SARS-CoV-2 has precipitated a new global wave of the COVID-19 pandemic. The rapid identification of SARS-CoV-2 infection is imperative for the effective mitigation of transmission. Diagnostic modalities such as rapid antigen testing and real-time reverse transcription polymerase chain reaction (RT-PCR) offer expedient turnaround times of 10-15 min and straightforward implementation. This preliminary study assessed the correlation between outcomes of commercially available rapid antigen tests for home use and conventional reverse transcription polymerase chain reaction (RT-PCR) assays using a limited set of clinical specimens. Patients aged 5-99 years presenting to the emergency department for SARS-CoV-2 testing were eligible for enrollment (n = 5652). Direct PCR and conventional RT-PCR were utilized for the detection of SARS-CoV-2. The entire cohort of 5652 clinical specimens was assessed by both modalities to determine the clinical utility of the direct RT-PCR assay. Timely confirmation of SARS-CoV-2 infection may attenuate viral propagation and guide therapeutic interventions. Additionally, direct RT-PCR as a secondary confirmatory test for at-home rapid antigen test results demonstrated sensitivity comparable to conventional RT-PCR, indicating utility for implementation in laboratories globally, especially in resource-limited settings with constraints on reagents, equipment, and skilled personnel. In summary, direct RT-PCR enables the detection of SARS-CoV-2 with a sensitivity approaching that of conventional RT-PCR while offering expedient throughput and shorter turnaround times. Moreover, direct RT-PCR provides an open-source option for diagnostic laboratories worldwide, particularly in low- and middle-income countries.

12.
PeerJ ; 11: e14666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710871

RESUMO

Purpose: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major healthcare threat worldwide. Since it was first identified in November 2021, the Omicron (B.1.1.529) variant of SARS-CoV-2 has evolved into several lineages, including BA.1, BA.2-BA.4, and BA.5. SARS-CoV-2 variants might increase transmissibility, pathogenicity, and resistance to vaccine-induced immunity. Thus, the epidemiological surveillance of circulating lineages using variant phenotyping is essential. The aim of the current study was to characterize the clinical outcome of Omicron BA.2 infections among hospitalized COVID-19 patients and to perform an immunological assessment of such cases against SARS-CoV-2. Patients and Methods: We evaluated the analytical and clinical performance of the BioIC SARS-CoV-2 immunoglobulin (Ig)M/IgG detection kit, which was used for detecting antibodies against SARS-CoV-2 in 257 patients infected with the Omicron variant. Results: Poor prognosis was noted in 38 patients, including eight deaths in patients characterized by comorbidities predisposing them to severe COVID-19. The variant-of-concern (VOC) typing and serological analysis identified time-dependent epidemic trends of BA.2 variants emerging in the outbreak of the fourth wave in Taiwan. Of the 257 specimens analyzed, 108 (42%) and 24 (9.3%) were positive for anti-N IgM and IgG respectively. Conclusion: The VOC typing of these samples allowed for the identification of epidemic trends by time intervals, including the B.1.1.529 variant replacing the B.1.617.2 variant. Moreover, antibody testing might serve as a complementary method for COVID-19 diagnosis. The combination of serological testing results with the reverse transcription-polymerase chain reaction cycle threshold value has potential value in disease prognosis, thereby aiding in epidemic investigations conducted by clinicians or the healthcare department.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Algoritmos , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M
13.
Int J Infect Dis ; 127: 56-62, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455809

RESUMO

OBJECTIVES: We have established a novel 5-in-1 VOC assay to rapidly detect SARS-CoV-2 and immediately distinguish whether positive samples represent variants of concern (VOCs). METHODS: This assay could distinguish among five VOCs: Alpha, Beta, Gamma, Delta, and Omicron, in a single reaction tube. The five variants exhibit different single nucleotide polymorphisms (SNPs) in their viral genome, which can be used to distinguish them. We selected target SNPs in the spike gene, including N501Y, P681R, K417N, and deletion H69/V70 for the assay. RESULTS: The limit of detection of each gene locus was 80 copies per polymerase chain reaction. We observed a high consistency among the results when comparing the performance of our 5-in-1 VOC assay, whole gene sequencing, and the Roche VirSNiP SARS-CoV-2 test in retrospectively analyzing 150 clinical SARS-CoV-2 variant positive samples. The 5-in-1 VOC assay offers an alternative and rapid high-throughput test for most diagnostic laboratories in a flexible sample-to-result platform. CONCLUSION: The assay can also be applied in a commercial platform with the completion of the SARS-CoV-2 confirmation test and identification of its variant within 2.5 hours.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por RNA , Teste para COVID-19
14.
J Emerg Med ; 43(3): e163-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20036095

RESUMO

BACKGROUND: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare mitochondrial disorder with a wide range of multisystemic symptoms. Epileptic seizures are common features of both MELAS and meningoencephalitis and are typically treated with anticonvulsants. OBJECTIVES: To provide the reader with a better understanding of MELAS and the adverse effects of valproic acid. CASE REPORT: A 47-year-old man with a history of diabetes, hearing loss, sinusitis, and otitis media was brought to our emergency department due to acute onset of fever, headache, generalized seizure, and agitation. Because acute meningoencephalitis was suspected, the patient was treated with antibiotics on an empirical basis. The seizure activity was aggravated by valproic acid and abated after its discontinuation. MELAS was suspected and the diagnosis was confirmed by the presence of a nucleotide 3243 A→G mutation in the mitochondrial DNA. CONCLUSION: Detailed history-taking and systematic review help emergency physicians differentiate MELAS from meningoencephalitis in patients with the common presentation of epileptic seizures. Use of valproic acid to treat epilepsy in patients suspected of having mitochondrial disease should be avoided. Underlying mitochondrial disease should be suspected if seizure activity worsens with valproic acid therapy.


Assuntos
Anticonvulsivantes/efeitos adversos , Síndrome MELAS/diagnóstico , Ácido Valproico/efeitos adversos , DNA Mitocondrial/genética , Diagnóstico Diferencial , Humanos , Síndrome MELAS/genética , Masculino , Meningoencefalite/diagnóstico , Meningoencefalite/tratamento farmacológico , Pessoa de Meia-Idade , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
15.
J Microbiol Immunol Infect ; 55(6 Pt 1): 1036-1043, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057491

RESUMO

BACKGROUND/PURPOSE: Clinical characteristics of patients in the first community outbreak of coronavirus disease 2019 (COVID-19) by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.7 in Taiwan have not been characterized. METHODS: SARS-CoV-2 positive specimens from inpatients between May 7 and June 15 in 2021were screen for SARS-CoV-2 B.1.1.7 lineage by VirSNiP assay. Clinical characteristics were reviewed and compared with those from Feb 1 to April 30, 2020 and from Jan 1 to March 31, 2022. RESULTS: One hundred forty-one inpatients from May 7 to June 15, 2021 infected with SARS-CoV-2 B.1.1.7 lineage were included. The major presenting symptoms were fever (88.7%) and cough (59.6%). Incidence of relevant complications including pulmonary embolism, simultaneous infections with bacteria, virus, and fungi were 0.7%, 12.8%, 13.5%, and 2.1%, respectively. Old age, high Charlson comorbidity index, short of breath, and initial critical illness were independently associated with 28-day mortality (all p < 0.05). In comparison to COVID-19 inpatients from Feb 1 to April 30, 2020, patients from the outbreak by SARS-CoV-2 B.1.1.7 lineage were older, more severe in disease condition, higher mortality but less obvious initial presenting symptoms. After implementation of nationwide vaccination campaign in the next half year of 2021, COVID-19 inpatients from Jan 1 to March 31 in 2022 indicated less severe diseases than those infected with SARS-CoV-2 B.1.1.7 lineage. CONCLUSION: COVID-19 inpatients by SARS-CoV-2 variant B.1.1.7 with old age, multiple comorbidities, and more severe disease conditions were associated with increased mortality. Vaccination for this vulnerable populations may be helpful.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Taiwan/epidemiologia , Surtos de Doenças
16.
Infect Drug Resist ; 15: 595-603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237052

RESUMO

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent behind coronavirus disease-2019 (COVID-19). Single-plex reverse transcription-polymerase chain reaction (RT-PCR)-based assays are widely used for COVID-19 detection but exhibit decreased sensitivity and specificity in detecting the rapidly spreading SARS-CoV-2 variants; in contrast, multiplex RT-PCR reportedly yields better results. Here, we aimed at comparatively analyzing the clinical performance of the LabTurboTM AIO COVID-19 RNA testing kit, a multiplex quantitative RT-PCR kit, including a three-target (E, N1, and RNase P), single-reaction, triplex assay used for SARS-CoV-2 detection, with that of the WHO-recommended RT-PCR assay. MATERIALS AND METHODS: Residual, natural, nasopharyngeal swabs obtained from universal transport medium specimens at SARS-CoV-2 testing centers (n = 414) were collected from May to October 2021. For SARS-CoV-2 qRT-PCR, total viral nucleic acid was extracted. The limit of detection (LOD) and the comparative clinical performances of the LabTurboTM AIO COVID-19 RNA kit and the WHO-recommended RT-PCR assay were assessed. Statistical analysis of the correlation was performed and results with R2 values >0.9 were considered to be highly correlated. RESULTS: The LOD of the LabTurboTM AIO COVID-19 RNA kit was 9.4 copies/reaction for the target genes N1 and E. The results obtained from 102 SARS-CoV-2-positive and 312 SARS-CoV-2-negative samples showed 100% correlation with previous WHO-recommended RT-PCR assay results. CONCLUSION: Multiplex qRT-PCR is a critical tool for detecting unknown pathogens and employs multiple target genes. The LabTurboTM AIO COVID-19 RNA testing kit provides an effective and efficient assay for SARS-CoV-2 detection and is highly compatible with SARS-CoV-2 variants.

17.
Int J Infect Dis ; 114: 112-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34758391

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic. Diagnostic testing for SARS-CoV-2 has continuously been challenged due to several variants with diverse spike (S) and nucleocapsid (N) protein mutations []. SARS-CoV-2 variant proliferation potentially affects N protein-targeted rapid antigen testing. In this study, rapid antigen and reverse transcription PCR (RT-PCR) tests were performed simultaneously in patients with suspected coronavirus disease 2019 (COVID-19). Direct whole genome sequencing was performed to determine the N protein variations, and the viral assemblies were uploaded to GISAID. The genomes were then compared with those of global virus strains from GISAID. These isolates belonged to the B.1.1.7 variant, exhibiting several amino acid substitutions, including D3L, R203K, G204R, and S235F N protein mutations. The T135I mutation was also identified in one variant case in which the rapid antigen test and RT-PCR test were discordantly negative and positive, respectively. These findings suggest that the variants undetected by the Panbio COVID-19 rapid antigen test may be due to the T135I mutation in the N protein, posing a potential diagnostic risk for commercially available antigen tests. Hence, we recommend concomitant paired rapid antigen tests and molecular diagnostic methods to detect SARS-CoV-2. False-negative results could be rapidly corrected using confirmatory RT-PCR results to prevent future COVID-19 outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Nucleocapsídeo/genética , Sensibilidade e Especificidade
18.
Int J Infect Dis ; 124: 45-48, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087642

RESUMO

OBJECTIVES: Since April 2022, another wave of the Omicron epidemic has struck Taiwanese society, and children with severe neurological complications have been reported frequently. A few cases even developed acute fulminant encephalitis. To investigate the possible causes of the increased incidence of such complications in Taiwan, we reviewed several cases of pediatric patients with severe neurological symptoms. METHODS: We collected the medical records of pediatric patients with COVID-19 infection who presented with severe neurological symptoms. The COVID-19 infection was diagnosed by nasal swab reverse transcriptase-polymerase chain reaction. The remaining samples were sent for whole genome sequencing and spike (S) protein amino acid variation mapping. RESULTS: The increase of several inflammatory markers was observed in all patients included in this study. However, none of the cerebrospinal fluid samples tested positive for SARS-CoV-2. The result of whole genome sequencing showed that all the sequences belonged to the lineage BA.2.3.7. However, the sequences had a K97E mutation in the S protein that differed from other BA.2.3.7 lineage strains, which was located at the S protein N-terminal domain. CONCLUSION: The new mutation in the S protein, which had not previously been observed but was discovered in this study, potentially explains the sudden increase in incidence of extremely adverse neurological symptoms in pediatric patients.


Assuntos
COVID-19 , Humanos , Criança , COVID-19/diagnóstico , SARS-CoV-2/genética , Taiwan/epidemiologia , Genoma Viral , Estado Terminal
19.
Aging (Albany NY) ; 14(11): 4624-4633, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35657641

RESUMO

Since the late 2020, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been characterized by the emergence of spike protein mutations, and these variants have become dominant worldwide. The gold standard SARS-CoV-2 diagnosis protocol requires two complex processes, namely, RNA extraction and real-time reverse transcriptase polymerase chain reaction (RT-PCR). There is a need for a faster, simpler, and more cost-effective detection strategy that can be utilized worldwide, especially in developing countries. We propose the novel use of direct RT-qPCR, which does not require RNA extraction or a preheating step. For the detection, retrospectively, we used 770 clinical nasopharyngeal swabs, including positive and negative samples. The samples were subjected to RT-qPCR in the N1 and E genes using two different thermocyclers. The limit of detection was 30 copies/reaction for N1 and 60 copies/reaction for E. Analytical sensitivity was assessed for the developed direct RT-qPCR; the sensitivity was 95.69%, negative predictive value was 99.9%, accuracy of 99.35%, and area under the curve was 0.978. This novel direct RT-qPCR diagnosis method without RNA extraction is a reliable and high-throughput alternative method that can significantly save cost, labor, and time during the coronavirus disease 2019 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Análise Custo-Benefício , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos Retrospectivos , SARS-CoV-2/genética , Sensibilidade e Especificidade
20.
Microbiol Spectr ; 10(1): e0251321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196812

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Many variants of SARS-CoV-2 have been reported, some of which have increased transmissibility and/or reduced susceptibility to vaccines. There is an urgent need for variant phenotyping for epidemiological surveillance of circulating lineages. Whole-genome sequencing is the gold standard for identifying SARS-CoV-2 variants, which constitutes a major bottleneck in developing countries. Methodological simplification could increase epidemiological surveillance feasibility and efficiency. We designed a novel multiplex real-time reverse transcriptase PCR (RT-PCR) to detect SARS-CoV-2 variants with S gene mutations. This multiplex PCR typing method was established to detect 9 mutations with specific primers and probes (ΔHV 69/70, K417T, K417N, L452R, E484K, E484Q, N501Y, P681H, and P681R) against the receptor-binding domain of the spike protein of SARS-CoV-2 variants. In silico analyses showed high specificity of the assays. Variants of concern (VOC) typing results were found to be highly specific for our intended targets, with no cross-reactivity observed with other upper respiratory viruses. The PCR-based typing methods were further validated using whole-genome sequencing and a commercial kit that was applied to clinical samples of 250 COVID-19 patients from Taiwan. The screening of these samples allowed the identification of epidemic trends by time intervals, including B.1.617.2 in the third Taiwan wave outbreak. This PCR typing strategy allowed the detection of five major variants of concern and also provided an open-source PCR assay which could rapidly be deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, P.1, and B.1.617.2 variants and of four Omicron mutations on the spike protein (ΔHV 69/70, K417N, N501Y, P681H). IMPORTANCE COVID-19 has spread globally. SARS-CoV-2 variants of concern (VOCs) are leading the next waves of the COVID-19 pandemic. Previous studies have pointed out that these VOCs may have increased infectivity, have reduced vaccine susceptibility, change treatment regimens, and increase the difficulty of epidemic prevention policy. Understanding SARS-CoV-2 variants remains an issue of concern for all local government authorities and is critical for establishing and implementing effective public health measures. A novel SARS-CoV-2 variant identification method based on a multiplex real-time RT-PCR was developed in this study. Five SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, and Omicron) were identified simultaneously using this method. PCR typing can provide rapid testing results with lower cost and higher feasibility, which is well within the capacity for any diagnostic laboratory. Characterizing these variants and their mutations is important for tracking SAR-CoV-2 evolution and is conducive to public infection control and policy formulation strategies.


Assuntos
COVID-19/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/classificação , COVID-19/epidemiologia , Monitoramento Epidemiológico , Humanos , Mutação , Pandemias , Saúde Pública , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Taiwan , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA