Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Photochem Photobiol Sci ; 14(8): 1451-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25832889

RESUMO

It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/efeitos da radiação , Resistencia a Medicamentos Antineoplásicos , Humanos , Integrinas/metabolismo , Neoplasias/fisiopatologia , Fotoquimioterapia/métodos
2.
Breast Cancer Res ; 10(6): R94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19014541

RESUMO

INTRODUCTION: The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. METHODS: We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. RESULTS: We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90alpha, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90alpha promoted survival in the presence of serum but appeared to have little effect during starvation. CONCLUSIONS: In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90alpha inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90alpha promotes survival depending on the cellular conditions and state of cellular transformation.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP90/genética , Janus Quinase 2/genética , Prolactina/farmacologia , Fator de Transcrição STAT5/genética , Apoptose/fisiologia , Benzoquinonas/farmacologia , Northern Blotting , Western Blotting , Diferenciação Celular , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Biblioteca Gênica , Humanos , Lactamas Macrocíclicas/farmacologia , Luciferases/metabolismo , Hibridização de Ácido Nucleico , RNA Mensageiro/metabolismo , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
3.
Int J Oncol ; 29(2): 397-405, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16820882

RESUMO

We isolated and characterized cell lines resistant to aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) derived from a murine adenocarcinoma and studied cross resistance with other injuries. The most resistant clones were numbers 4 and 8, which exhibited 6.7- and 4.2-fold increase in resistance respectively. Several characteristics were altered in these clones. A 2-fold increase in cell volume, higher cell spreading, and a more fibroblastic, dendritic pattern, were the morphology features that led us to think they could have different adhesive, invasive or metastatic phenotypes. The amount of porphyrins synthesized per cell in the resistant clones was similar to the parental line but, when it was expressed per mg protein, there was a 2-fold decrease, with a higher proportion of hydrophilic porphyrins. These cells were not cross-resistant to photosensitization with Benzoporphyrin derivative and Merocyanine 540, but exhibited a slight resistance to exogenous protoporphyrin IX treatment. Both clones displayed higher protein content and increased number of mitochondria, together with a higher oxygen consumption. The distinctive features found in the resistant lines led as to think how to exploit the changes induced by PDT treatment to target surviving cells. Those hypoxic cells can be also a preferential target of bioreductive drugs and hypoxia-directed gene therapy, and would be sensitive to treatment with other photosensitizers.


Assuntos
Ácido Aminolevulínico/química , Fotoquimioterapia/métodos , Animais , Linhagem Celular Tumoral , Luz , Camundongos , Consumo de Oxigênio , Fármacos Fotossensibilizantes/química , Porfirinas/química , Protoporfirinas/química , Pirimidinonas/química , Sais de Tetrazólio/química , Tiazóis/química
4.
J Photochem Photobiol B ; 80(3): 195-202, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15967676

RESUMO

In this work, we studied the in vitro interactions between aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) and nitric oxide (NO), as well as the interactions between ALA, porphyrins and some NO donors and precursors. We employed three murine adenocarcinoma cell lines: LM2, which does not produce NO; LM3, which produces NO, and LM3-SNP, a variant of LM3 resistant to NO producing the same amount of NO as the parental. We did not find cross-resistance between NO-induced cytotoxicity and ALA-PDT. In spite of the lower porphyrin synthesis, LM2 cells show the highest sensitivity to ALA-PDT. However, we hypothesised that this is not related to the lack of endogenous NO production, because modulation of NO levels did not modify the response to PDT in any of the cell lines. Two unexpected results were found: the enhancement of NO production from the donor sodium nitroprusside (SNP) induced by ALA in both cells and medium, and the inhibition by ALA of NO production from arginine. We also found that SNP strongly protected the cells from ALA-PDT by impairing porphyrin biosynthesis as a consequence of an inhibition of the enzyme ALA dehydratase. We were not able to evaluate the action of NO derived from SNP because of the unexpected porphyrin impairment. On the other hand, impairment of NO from Arginine driven by ALA, although not modulating in vitro the ALA-PDT response, by increasing in vivo blood flow, may be contributing to the mechanism of tumour cures.


Assuntos
Ácido Aminolevulínico/farmacologia , Óxido Nítrico/metabolismo , Fotoquimioterapia , Adenocarcinoma/tratamento farmacológico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células L , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Doadores de Óxido Nítrico/farmacologia , Porfirinas/farmacologia
5.
J Photochem Photobiol B ; 75(3): 157-63, 2004 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-15341929

RESUMO

Photodynamic therapy using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX is a recent approach to detect and treat some malignancies. The use of lipophilic derivatives of ALA has been exploited in the last years to enhance ALA penetration. In this paper, we describe the application of the Mauzerall and Granick's method [J. Biol. Chem. 219 (1956) 435] to the quantification of ALA derivatives. We also describe the employment of reusable ion-exchange chromatographic columns for separating mixtures of ALA and ALA derivatives present in biological samples. The relation between 555 nm absorbance and ALA or ALA derivative concentration was linear up to 100 nmol/ml and the limit of detection of ALA and ALA derivatives was 1 nmol per ml. We employed a Dowex 50 X8 hydrogen form resin to separate ALA from the derivatives. Whereas 90+/-4% of the total ALA was eluted using sodium acetate, only 3-9% of the ALA derivatives was recovered. Only upon exposure of the resin to a high HCl concentration, the ALA derivatives were completely released. We employed this new method for the separation of ALA from ALA derivatives in cells exposed to different ALA compounds.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/isolamento & purificação , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/química , Animais , Cromatografia por Troca Iônica/métodos , Camundongos , Células Tumorais Cultivadas
6.
Neuro Oncol ; 16(1): 62-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24311633

RESUMO

BACKGROUND: Embryonal tumor with multilayered rosettes (ETMR) is an aggressive central nervous system primitive neuroectodermal tumor (CNS-PNET) variant. ETMRs have distinctive histology, amplification of the chromosome 19 microRNA cluster (C19MC) at chr19q13.41-42, expression of the RNA binding protein Lin28, and dismal prognosis. Functional and therapeutic studies of ETMR have been limited by a lack of model systems. METHODS: We have established a first cell line, BT183, from a case of ETMR and characterized its molecular and cellular features. LIN28 knockdown was performed in BT183 to examine the potential role of Lin28 in regulating signaling pathway gene expression in ETMR. Cell line findings were corroborated with immunohistochemical studies in ETMR tissues. A drug screen of 73 compounds was performed to identify potential therapeutic targets. RESULTS: The BT183 line maintains C19MC amplification, expresses C19MC-encoded microRNAs, and is tumor initiating. ETMRs, including BT183, have high LIN28 expression and low let-7 miRNA expression, and show evidence of mTOR pathway activation. LIN28 knockdown increases let-7 expression and decreases expression of IGF/PI3K/mTOR pathway components. Pharmacologic inhibition of the mTOR pathway reduces BT183 cell viability. CONCLUSIONS: BT183 retains key genetic and histologic features of ETMR. In ETMR, Lin28 is not only a diagnostic marker but also a regulator of genes involved in growth and metabolism. Our findings indicate that inhibitors of the IGF/PI3K/mTOR pathway may be promising novel therapies for these fatal embryonal tumors. As the first patient-derived cell line of these rare tumors, BT183 is an important, unique reagent for investigating ETMR biology and therapeutics.


Assuntos
Cromossomos Humanos Par 19/genética , Amplificação de Genes , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Técnicas de Cultura de Células , Pré-Escolar , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/metabolismo , Tumores Neuroectodérmicos Primitivos/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Genet ; 46(1): 39-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316981

RESUMO

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19 , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Masculino , Isoformas de Proteínas , Proteína p130 Retinoblastoma-Like/genética , Ensaios Antitumorais Modelo de Xenoenxerto , DNA Metiltransferase 3B
8.
Cancer Lett ; 271(2): 342-51, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18662847

RESUMO

Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Metástase Neoplásica , Fotoquimioterapia , Animais , Adesão Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C
9.
Nitric Oxide ; 13(3): 155-62, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16115785

RESUMO

Photodynamic therapy (PDT) interactions with nitric oxide (NO) are not well understood. In this work, we attempted to elucidate whether NO cytotoxicity and PDT from aminolevulinic acid (ALA) have independent cell damage mechanisms. We employed the murine mammary adenocarcinoma cell line LM3 and its NO-resistant variant LM3-SNP obtained after successive exposures to sodium nitroprusside (SNP). No cross-resistance was found between NO cytotoxicity and ALA-PDT; LM3-SNP cells were not more resistant to ALA-PDT than the parental line, instead they were more sensitive. We also induced resistance to ALA-PDT in LM3-SNP cells after multiple cycles of photodynamic treatment. We isolated two clones, identified as Clon 1 and Clon 3, which were 9.2 and 12.5 times more resistant to ALA-PDT than the parental lines, showing that resistance to NO did not interfere in the development of PDT resistance. In addition, the sensitivity to NO decreased in Clon 1 and increased in Clon 3, but they did not show any modifications in NO production. All the cell lines have similar GSH content and GSH transferases activities. However, GSSG content is markedly lower in LM3-SNP, Clon 1, and Clon 3 compared to parental LM3 line and consequently GSH/GSSG ratios are also higher. Our results suggest that different degrees of NO resistance of tumours would not correlate with resistance to PDT.


Assuntos
Adenocarcinoma/metabolismo , Ácido Aminolevulínico/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Experimentais/metabolismo , Óxido Nítrico/farmacologia , Fotoquimioterapia , Adenocarcinoma/tratamento farmacológico , Ácido Aminolevulínico/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dose Letal Mediana , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Óxido Nítrico/biossíntese , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA