Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 20(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35877754

RESUMO

Blooms of the benthic toxic dinoflagellate genus Ostreopsis have been recorded more frequently during the last two decades, particularly in warm temperate areas such as the Mediterranean Sea. The proliferation of Ostreopsis species may cause deleterious effects on ecosystems and can impact human health through skin contact or aerosol inhalation. In the eastern Atlantic Ocean, the toxic O. cf. ovata has not yet been reported to the north of Portugal, and the only species present further north was O. cf. siamensis, for which the toxic risk is considered low. During summer blooms of unidentified Ostreopsis species on the French Basque coast (Atlantic) in 2020 and 2021, people suffered from irritations and respiratory disorders, and the number of analyzed cases reached 674 in 2021. In order to investigate the causes, sampling was carried out during summer 2021 to (i) taxonomically identify Ostreopsis species present using a molecular approach, (ii) isolate strains from the bloom and culture them, and (iii) characterize the presence of known toxins which may be involved. For the first time, this study reports the presence of both O. cf. siamensis and O. cf. ovata, for which the French Basque coast is a new upper distribution limit. Furthermore, the presence of ovatoxins a, b, c, and d in the environmental sample and in a cultivated strain in culture confirmed the toxic nature of the bloom and allowed identifying O. cf. ovata as the producer. The present data identify a new health risk in the area and highlight the extended distribution of some harmful dinoflagellates, presumably in relation to climate change.


Assuntos
Dinoflagellida , Ecossistema , Oceano Atlântico , Humanos , Mar Mediterrâneo , Portugal
2.
Harmful Algae ; 107: 101974, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34456013

RESUMO

Dinoflagellates of the genus Dinophysis are the most prominent producers of Diarrhetic Shellfish Poisoning (DSP) toxins which have an impact on public health and on marine aquaculture worldwide. In particular, Dinophysis acuminata has been reported as the major DSP agent in Western Europe. Still, its contribution to DSP events in the regions of the English Channel and the Atlantic coast of France, and the role of the others species of the Dinophysis community in these areas are not as clear. In addition, species identification within the D. acuminata complex has proven difficult due to their highly similar morphological features. In the present study, 30 clonal strains of the dominant Dinophysis species have been isolated from French coasts including the English Channel (3 sites), the Atlantic Ocean (11 sites) and the Mediterranean Sea (6 sites). Morphologically, strains were identified as three species: D. acuta, D. caudata, D. tripos, as well as the D. acuminata-complex. Sequences of the ITS and LSU rDNA regions confirmed these identifications and revealed no genetic difference within the D. acuminata-complex. Using the mitochondrial gene cox1, two groups of strains differing by only one substitution were found in the D. acuminata-complex, but SEM analysis of various strains showed a large range of morphological variations. Based on geographical origin and morphology, strains of the subclade A were ascribed to 'D. acuminata' while those of the subclade B were ascribed to 'D. sacculus'. Nevertheless, the distinction into two separate species remains questionable and was not supported by our genetic data. The considerable variations observed in cultured strains suggest that physiological factors might influence cell contour and bias identification. Analyses of Dinophysis cultures from French coastal waters using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) revealed species-conserved toxin profiles for D. acuta (dinophysistoxin 2 (DTX2), okadaic acid (OA), pectenotoxin 2 (PTX2)), D. caudata (PTX2) and D. tripos (PTX2), irrespective of geographical origin (Atlantic Ocean or Mediterranean Sea). Within the D. acuminata-complex, two different toxin profiles were observed: the strains of 'D. acuminata' (subclade A) from the English Channel and the Atlantic Ocean contained only OA while strains of 'D. sacculus' (subclade B) from Mediterranean Sea/Atlantic Ocean contained PTX2 as the dominant toxin, with OA and C9-esters also being present, albeit in lower proportions. The same difference in toxin profiles between 'D. sacculus' and 'D. acuminata' was reported in several studies from Galicia (NW- Spain). This difference in toxin profiles has consequences in terms of public health, and consequently for monitoring programs. While toxin profile could appear as a reliable feature separating 'D. acuminata' from 'D. sacculus' on both French and Spanish coasts, this does not seem consistent with observations on a broader geographical scale for the D. acuminata complex, possibly due to the frequent lack of genetic characterization.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Cromatografia Líquida , Dinoflagellida/genética , Toxinas Marinhas/análise , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA