Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadk2082, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598634

RESUMO

We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sequências Reguladoras de Ácido Nucleico , Regulação Neoplásica da Expressão Gênica
2.
bioRxiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39071291

RESUMO

Genomic loss of the transcriptional kinase CDK12 occurs in ~6% of metastatic castration-resistant prostate cancers (mCRPC) and correlates with poor patient outcomes. Prior studies demonstrate that acute CDK12 loss confers a homologous recombination (HR) deficiency (HRd) phenotype via premature intronic polyadenylation (IPA) of key HR pathway genes, including ATM. However, mCRPC patients have not demonstrated benefit from therapies that exploit HRd such as inhibitors of polyADP ribose polymerase (PARP). Based on this discordance, we sought to test the hypothesis that an HRd phenotype is primarily a consequence of acute CDK12 loss and the effect is greatly diminished in prostate cancers adapted to CDK12 loss. Analyses of whole genome sequences (WGS) and RNA sequences (RNAseq) of human mCRPCs determined that tumors with biallelic CDK12 alterations (CDK12 BAL ) lack genomic scar signatures indicative of HRd, despite carrying bi-allelic loss and the appearance of the hallmark tandem-duplicator phenotype (TDP). Experiments confirmed that acute CDK12 inhibition resulted in aberrant polyadenylation and downregulation of long genes (including BRCA1 and BRCA2) but such effects were modest or absent in tumors adapted to chronic CDK12 BAL . One key exception was ATM, which did retain transcript shortening and reduced protein expression in the adapted CDK12 BAL models. However, CDK12 BAL cells demonstrated intact HR as measured by RAD51 foci formation following irradiation. CDK12 BAL cells showed a vulnerability to targeting of CDK13 by sgRNA or CDK12/13 inhibitors and in vivo treatment of prostate cancer xenograft lines showed that tumors with CDK12 BAL responded to the CDK12/13 inhibitor SR4835, while CDK12-intact lines did not. Collectively, these studies show that aberrant polyadenylation and long HR gene downregulation is primarily a consequence of acute CDK12 deficiency, which is largely compensated for in cells that have adapted to CDK12 loss. These results provide an explanation for why PARPi monotherapy has thus far failed to consistently benefit patients with CDK12 alterations, though alternate therapies that target CDK13 or transcription are candidates for future research and testing.

3.
NPJ Precis Oncol ; 8(1): 104, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760413

RESUMO

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA