Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Exp Cell Res ; 378(1): 76-86, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844389

RESUMO

Slow-cycling and treatment-resistant cancer cells escape therapy, providing a rationale for regrowth and recurrence in patients. Much interest has focused on identifying the properties of slow-cycling tumor cells in glioblastoma (GBM), the most common and lethal primary brain tumor. Despite aggressive ionizing radiation (IR) and treatment with the alkylating agent temozolomide (TMZ), GBM patients invariably relapse and ultimately succumb to the disease. In patient biopsies, we demonstrated that GBM cells expressing the proliferation markers Ki67 and MCM2 displayed a larger cell volume compared to rare slow-cycling tumor cells. In optimized density gradients, we isolated a minor fraction of slow-cycling GBM cells in patient biopsies and tumorsphere cultures. Transcriptional profiling, self-renewal, and tumorigenicity assays reflected the slow-cycling state of high-density GBM cells (HDGCs) compared to the tumor bulk of low-density GBM cells (LDGCs). Slow-cycling HDGCs enriched for stem cell antigens proliferated a few days after isolation to generate LDGCs. Both in vitro and in vivo, we demonstrated that HDGCs show increased treatment-resistance to IR and TMZ treatment compared to LDGCs. In conclusion, density gradients represent a non-marker based approach to isolate slow-cycling and treatment-resistant GBM cells across GBM subgroups.


Assuntos
Neoplasias Encefálicas/patologia , Autorrenovação Celular , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Nus , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Transcriptoma , Células Tumorais Cultivadas
2.
Proc Natl Acad Sci U S A ; 110(16): E1480-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23542378

RESUMO

Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRas(V12) mouse model crossed into the p53ER(TAM) background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ER(TAM) allele. The p53ER(TAM) protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRas(V12);p53(+/KI) mice abrogate the p53 pathway by mutating p19(ARF)/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ER(TAM) allele. By contrast, gliomas arising in GFAP-HRas(V12);p53(KI/KI) mice develop in the absence of functional p53. Such tumors retain a functional p19(ARF)/MDM2-signaling pathway, and restoration of p53ER(TAM) allele triggers p53-tumor-suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14(ARF)/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRas(V12);p53(KI/KI) animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ER(TAM) activity mitigated the selective pressure to inactivate the p19(ARF)/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance.


Assuntos
Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Glioblastoma/fisiopatologia , Transdução de Sinais/fisiologia , Tamoxifeno/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Primers do DNA/genética , Imunofluorescência , Glioblastoma/metabolismo , Técnicas Histológicas , Humanos , Immunoblotting , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Análise de Sequência de DNA , Transdução de Sinais/genética , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
3.
Cell Tissue Res ; 359(1): 225-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25416506

RESUMO

Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.


Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular , Animais , Neoplasias Encefálicas/genética , Carcinogênese/patologia , Proliferação de Células , Epigênese Genética , Humanos , Neurogênese
4.
Cell Rep ; 28(8): 2064-2079.e11, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433983

RESUMO

Identifying cellular programs that drive cancers to be stem-like and treatment resistant is critical to improving outcomes in patients. Here, we demonstrate that constitutive extracellular signal-regulated kinase 1/2 (ERK1/2) activation sustains a stem-like state in glioblastoma (GBM), the most common primary malignant brain tumor. Pharmacological inhibition of ERK1/2 activation restores neurogenesis during murine astrocytoma formation, inducing neuronal differentiation in tumorspheres. Constitutive ERK1/2 activation globally regulates miRNA expression in murine and human GBMs, while neuronal differentiation of GBM tumorspheres following the inhibition of ERK1/2 activation requires the functional expression of miR-124 and the depletion of its target gene SOX9. Overexpression of miR124 depletes SOX9 in vivo and promotes a stem-like-to-neuronal transition, with reduced tumorigenicity and increased radiation sensitivity. Providing a rationale for reports demonstrating miR-124-induced abrogation of GBM aggressiveness, we conclude that reversal of an ERK1/2-miR-124-SOX9 axis induces a neuronal phenotype and that enforcing neuronal differentiation represents a therapeutic strategy to improve outcomes in GBM.


Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular , Glioblastoma/patologia , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Neurônios/patologia , Fatores de Transcrição SOX9/metabolismo , Animais , Astrocitoma/genética , Astrocitoma/patologia , Benzamidas/farmacologia , Neoplasias Encefálicas/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Progressão da Doença , Feminino , Glioblastoma/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Tolerância a Radiação/efeitos dos fármacos
5.
BMC Med ; 6: 14, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18577219

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. METHODS: We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. RESULTS: Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III) and glioblastoma multiforme (World Health Organization grade IV) relative to non-neoplastic brain tissue (P < 0.01), and were increased 8- to 20-fold during differentiation of cultured mouse neural stem cells following growth factor withdrawal. Expression of microRNA-137 was increased 3- to 12-fold in glioblastoma multiforme cell lines U87 and U251 following inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC). Transfection of microRNA-124 or microRNA-137 induced morphological changes and marker expressions consistent with neuronal differentiation in mouse neural stem cells, mouse oligodendroglioma-derived stem cells derived from S100 beta-v-erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969). Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811) proteins. CONCLUSION: microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse oligodendroglioma-derived stem cells and human glioblastoma multiforme-derived stem cells and induce glioblastoma multiforme cell cycle arrest. These results suggest that targeted delivery of microRNA-124 and/or microRNA-137 to glioblastoma multiforme tumor cells may be therapeutically efficacious for the treatment of this disease.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/metabolismo , Neurônios/patologia , Oligodendroglioma/genética , Oligodendroglioma/patologia , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Regulação para Baixo , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neoplásicas , Transfecção , Células Tumorais Cultivadas , Regulação para Cima
6.
Neuron ; 100(4): 763-765, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30465758

RESUMO

Mechanical cues regulate neuronal function and reactivity of glial cells, the origin of gliomas. In this issue of Neuron, Chen et al. (2018) uncover a feedforward loop mediated by the mechanosensitive ion channel Piezo1 and tissue stiffness that drives glioma aggression.


Assuntos
Agressão , Glioma , Encéfalo , Humanos , Canais Iônicos , Neurônios
7.
Cell Death Dis ; 9(10): 1010, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262908

RESUMO

The weak immunogenicity of gliomas presents a barrier for effective immunotherapy. Na/H exchanger isoform 1 (NHE1) maintains alkaline intracellular pH (pHi) of glioma cells and acidic microenvironment. In addition, NHE1 is expressed in tumor-associated microglia and tumor-associated macrophages (TAMs) and involved in protumoral communications between glioma and TAMs. Therefore, we hypothesize that NHE1 plays a role in developing tumor resistance and immunosuppressive tumor microenvironment. In this study, we investigated the efficacy of pharmacological inhibition of NHE1 on combinatorial therapies. Here we show that temozolomide (TMZ) treatment stimulates NHE1 protein expression in two intracranial syngeneic mouse glioma models (SB28, GL26). Pharmacological inhibition of NHE1 potentiated the cytotoxic effects of TMZ, leading to reduced tumor growth and increased median survival of mice. Blockade of NHE1 stimulated proinflammatory activation of TAM and increased cytotoxic T cell infiltration into tumors. Combining TMZ, anti-PD-1 antibody treatment with NHE1 blockade significantly prolonged the median survival in the mouse glioma model. These results demonstrate that pharmacological inhibition of NHE1 protein presents a new strategy for potentiating TMZ-induced cytotoxicity and increasing tumor immunogenicity for immunotherapy to improve glioma therapy.


Assuntos
Glioma/tratamento farmacológico , Glioma/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Temozolomida/farmacologia , Animais , Anticorpos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/efeitos dos fármacos
9.
Transl Oncol ; 11(4): 941-949, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29883968

RESUMO

The goal of this research was to elucidate the relationship between WHO 2016 molecular classifications of newly diagnosed, nonenhancing lower grade gliomas (LrGG), tissue sample histopathology, and magnetic resonance (MR) parameters derived from diffusion, perfusion, and 1H spectroscopic imaging from the tissue sample locations and the entire tumor. A total of 135 patients were scanned prior to initial surgery, with tumor cellularity scores obtained from 88 image-guided tissue samples. MR parameters were obtained from corresponding sample locations, and histograms of normalized MR parameters within the T2 fluid-attenuated inversion recovery lesion were analyzed in order to evaluate differences between subgroups. For tissue samples, higher tumor scores were related to increased normalized apparent diffusion coefficient (nADC), lower fractional anisotropy (nFA), lower cerebral blood volume (nCBV), higher choline (nCho), and lower N-acetylaspartate (nNAA). Within the T2 lesion, higher tumor grade was associated with higher nADC, lower nFA, and higher Cho to NAA index. Pathological analysis confirmed that diffusion and metabolic parameters increased and perfusion decreased with tumor cellularity. This information can be used to select targets for tissue sampling and to aid in making decisions about treating residual disease.

10.
Mol Cancer Res ; 16(5): 777-790, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431617

RESUMO

Interstitial fluid pressure (IFP) presents a barrier to drug uptake in solid tumors, including the aggressive primary brain tumor glioblastoma (GBM). It remains unclear how fluid dynamics impacts tumor progression and can be targeted therapeutically. To address this issue, a novel telemetry-based approach was developed to measure changes in IFP during progression of GBM xenografts. Antisecretory factor (AF) is an endogenous protein that displays antisecretory effects in animals and patients. Here, endogenous induction of AF protein or exogenous administration of AF peptide reduced IFP and increased drug uptake in GBM xenografts. AF inhibited cell volume regulation of GBM cells, an effect that was phenocopied in vitro by the sodium-potassium-chloride cotransporter 1 (SLC12A2/NKCC1) inhibitor bumetanide. As a result, AF induced apoptosis and increased survival in GBM models. In vitro, the ability of AF to reduce GBM cell proliferation was phenocopied by bumetanide and NKCC1 knockdown. Next, AF's ability to sensitize GBM cells to the alkylating agent temozolomide, standard of care in GBM patients, was evaluated. Importantly, combination of AF induction and temozolomide treatment blocked regrowth in GBM xenografts. Thus, AF-mediated inhibition of cell volume regulation represents a novel strategy to increase drug uptake and improve outcome in GBM. Mol Cancer Res; 16(5); 777-90. ©2018 AACR.


Assuntos
Glioblastoma/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Progressão da Doença , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus
11.
Cancer Cell ; 33(5): 874-889.e7, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29681511

RESUMO

Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Glioma/irrigação sanguínea , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/microbiologia , Proteínas Wnt/metabolismo , Animais , Bevacizumab/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Fator de Transcrição 2 de Oligodendrócitos/genética , Temozolomida/farmacologia , Células Tumorais Cultivadas , Microambiente Tumoral , Proteínas Wnt/genética , Via de Sinalização Wnt/efeitos dos fármacos
12.
Mol Cancer Res ; 15(11): 1623-1633, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28778876

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor of adults and confers a poor prognosis due, in part, to diffuse invasion of tumor cells. Heparan sulfate (HS) glycosaminoglycans, present on the cell surface and in the extracellular matrix, regulate cell signaling pathways and cell-microenvironment interactions. In GBM, the expression of HS glycosaminoglycans and the enzymes that regulate their function are altered, but the actual HS content and structure are unknown. However, inhibition of HS glycosaminoglycan function is emerging as a promising therapeutic strategy for some cancers. In this study, we use liquid chromatography-mass spectrometry analysis to demonstrate differences in HS disaccharide content and structure across four patient-derived tumorsphere lines (GBM1, 5, 6, 43) and between two murine tumorsphere lines derived from murine GBM with enrichment of mesenchymal and proneural gene expression (mMES and mPN, respectively) markers. In GBM, the heterogeneous HS content and structure across patient-derived tumorsphere lines suggested diverse functions in the GBM tumor microenvironment. In GBM5 and mPN, elevated expression of sulfatase 2 (SULF2), an extracellular enzyme that alters ligand binding to HS, was associated with low trisulfated HS disaccharides, a substrate of SULF2. In contrast, other primary tumorsphere lines had elevated expression of the HS-modifying enzyme heparanase (HPSE). Using gene editing strategies to inhibit HPSE, a role for HPSE in promoting tumor cell adhesion and invasion was identified. These studies characterize the heterogeneity in HS glycosaminoglycan content and structure across GBM and reveal their role in tumor cell invasion.Implications: HS-interacting factors promote GBM invasion and are potential therapeutic targets. Mol Cancer Res; 15(11); 1623-33. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Animais , Neoplasias Encefálicas/química , Linhagem Celular Tumoral , Cromatografia Líquida , Edição de Genes , Glioblastoma/química , Glucuronidase/genética , Humanos , Espectrometria de Massas , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Transdução de Sinais , Sulfatases , Sulfotransferases/metabolismo , Microambiente Tumoral
13.
Radiat Res ; 188(4): 443-454, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28777696

RESUMO

Cranial radiation severely affects brain health and function, including glial cell production and myelination. Recent studies indicate that voluntary exercise has beneficial effects on oligodendrogenesis and myelination. Here, we hypothesized that voluntary running would increase oligodendrocyte numbers in the corpus callosum after irradiation of the juvenile mouse brain. The brains of C57Bl/6J male mice were 6 Gy irradiated on postnatal day 9 during the main gliogenic developmental phase, resulting in a loss of oligodendrocyte precursor cells. Upon adulthood, the mice were injected with bromodeoxyuridine and allowed to exercise on a running wheel for four weeks. Cell proliferation and survival, Ascl1+ oligodendrocyte precursor and Olig2+ oligodendrocyte cell numbers as well as CC1+ mature oligodendrocytes were quantified using immunohistology. Radiation induced a reduction in the number of Olig2+ oligodendrocytes by nearly 50% without affecting production or survival of new Olig2+ cells. Ascl1+ cells earlier in the oligodendroglial cell lineage were also profoundly affected, with numbers reduced by half. By three weeks of age, Olig2+ cell numbers had not recovered, and this was paralleled by a volumetric loss in the corpus callosum. The deficiency of Olig2+ oligodendrocytes persisted into adulthood. Additionally, the depletion of Ascl1+ progenitor cells was irreversible, and was even more pronounced at 12 weeks postirradiation compared to day 2 postirradiation. Furthermore, the overall number of CC1+ mature oligodendrocytes decreased by 28%. The depletion of Olig2+ cells in irradiated animals was reversed by 4 weeks of voluntary exercise. Moreover, voluntary exercise also increased the number of Ascl1+ progenitor cells in irradiated animals. Taken together, these results demonstrate that exercise in adulthood significantly ameliorates the profound and long-lasting effects of moderate exposure to immature oligodendrocytes during postnatal development.


Assuntos
Encéfalo/citologia , Encéfalo/efeitos da radiação , Oligodendroglia/citologia , Condicionamento Físico Animal/fisiologia , Animais , Contagem de Células , Proliferação de Células/efeitos da radiação , Corpo Caloso/citologia , Corpo Caloso/efeitos da radiação , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Tamanho do Órgão/efeitos da radiação , Fatores de Tempo , Substância Branca/citologia , Substância Branca/efeitos da radiação
14.
Neuro Oncol ; 19(2): 153-161, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27282398

RESUMO

High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analyses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, developmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative clinical management.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Criança , Glioma/genética , Glioma/metabolismo , Humanos , Gradação de Tumores , Prognóstico
15.
Neurosci Lett ; 396(3): 197-201, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16377088

RESUMO

It has been postulated that opiates induce addictive behaviour via changes in gene expression. PC12 cells were stably transfected with the recombinant human mu-opioid receptor (MOR) to study opioid-induced gene expression. Expression was verified by binding assay, immunocytochemistry, and immunblotting experiments. Forskolin-induced cAMP formation was inhibited by [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO 1 microM), a specific MOR agonist. This effect was completely antagonized by naloxone. By using cDNA arrays, including approximately 1,200 well-defined genes normally expressed in neural tissue, we monitored semi-quantitative changes in gene expression after 3 h short-term exposure to DAMGO. Incubation with DAMGO increased mRNA levels for 13 genes and down-regulated 13 other genes. Annexin V, RGS4 and CREB genes showed pronounced increase in expression after stimulation with DAMGO. Quantitative RT-PCR confirmed that DAMGO increased mRNA levels of Annexin V, an apoptosis-induced gene. We suggest that the PC12 cell transfected with the recombinant human MOR is a useful tool for identification of opioid-induced genes that may provide information on opiate effects of relevance for dependence.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Entorpecentes/farmacologia , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Animais , Anexina A5/genética , Anexina A5/metabolismo , Western Blotting/métodos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Regulação da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica/métodos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , RNA Mensageiro/metabolismo , Ensaio Radioligante/métodos , Ratos , Receptores Opioides mu/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transfecção/métodos
16.
Oncotarget ; 7(43): 69173-69187, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27732951

RESUMO

Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-ß/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma.


Assuntos
Autorrenovação Celular , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Quinase I-kappa B/genética , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/genética , Interferência de RNA , Ratos , Esferoides Celulares/metabolismo , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta/metabolismo
17.
Nat Cell Biol ; 18(12): 1336-1345, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27820599

RESUMO

Increased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM. Gain- and loss-of-function xenograft manipulations demonstrated that a mutant IDH1 restricts glioma aggression by reducing HIF1α-dependent TNC expression to decrease ECM stiffness and mechanosignalling. Recurrent IDH1-mutant patient gliomas had a stiffer TNC-enriched ECM that our studies attributed to reduced miR-203 suppression of HIF1α and TNC mediated via a tension-dependent positive feedback loop. Thus, our work suggests that elevated ECM stiffness can independently foster glioblastoma aggression and contribute to glioblastoma recurrence via bypassing the protective activity of IDH1 mutational status.


Assuntos
Neoplasias Encefálicas/patologia , Retroalimentação Fisiológica , Glioblastoma/metabolismo , Glioblastoma/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/metabolismo , Tenascina/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Imunofluorescência , Humanos , Isocitrato Desidrogenase/genética , Mecanotransdução Celular , MicroRNAs/metabolismo , Mutação/genética , Invasividade Neoplásica , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Neurosci Res ; 52(1): 1-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15811547

RESUMO

It has previously been suggested that exogenous growth hormone (GH) affect quality of life and higher brain functions through the endogenous opioid system. Recently, we showed that GH down-regulate 72 and 48 kDa delta opioid receptor (DOR) proteins in the adult rat cerebral cortex and cerebellum. In the present study, we found that an antiserum raised against the N-terminus of the DOR also recognizes a 36 kDa protein, not recognized by a C-terminus-directed antiserum. We aimed to investigate the identity of the 72, 48 and 36 kDa proteins and to further study the effects of GH on their expression in different brain regions. The expression was studied in hypophysectomized (Hx) and untreated normal female rats. One subgroup of Hx rats received GH as a daily subcutaneous injection for 19 days. Our data show that treatment with GH in Hx rats normalized the expression of the 72 kDa protein in the cerebral cortex, whereas no significant effect were observed for the 48 or 36 kDa proteins. However, GH significantly reduced the ratio between the 72 and 36 kDa proteins in different brain regions of Hx rats. Our data suggest that GH reduces the levels of a 72 kDa DOR that likely represents a dimeric form of a 36 kDa DOR post-translationally truncated at the C-terminus, and that altered receptor dimerization may be involved in GH induced effects in the central nervous system.


Assuntos
Encéfalo/metabolismo , Hormônio do Crescimento/farmacologia , Isoformas de Proteínas/biossíntese , Receptores Opioides delta/biossíntese , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Feminino , Hormônio do Crescimento/metabolismo , Hipofisectomia , Isoformas de Proteínas/química , Isoformas de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Ratos , Receptores Opioides delta/química , Receptores Opioides delta/efeitos dos fármacos
19.
Cancer Res ; 75(20): 4302-11, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282165

RESUMO

High grade gliomas (HGG) are classified into four subgroups based on transcriptional signatures and phenotypic characteristics. In particular, the proneural-to-mesenchymal transition (PMT) is associated with increased malignancy, poor prognosis, and disease recurrence, but the underlying causes of PMT are still unclear. In this study, we investigated whether radiotherapy promotes PMT using a genetically engineered mouse model of proneural HGG. We found that cranial ionizing radiation induced robust and durable PMT in tumors. Additionally, we isolated primary proneural HGG cells from mouse and human tumors and demonstrate that radiation induced a sustained cell-intrinsic mesenchymal transition associated with increased invasiveness and resistance to the alkylating agent temozolomide. Expectedly, irradiation-induced PMT was also associated with activation of the STAT3 transcription factor, and the combination of STAT3 blockade using JAK2 inhibitors with radiation abrogated the mesenchymal transition and extended survival of mice. Taken together, our data suggest that clinical JAK2 inhibitors should be tested in conjunction with radiation in patients with proneural HGG as a new strategy for blocking the emergence of therapy-resistant mesenchymal tumors at relapse.


Assuntos
Glioma/metabolismo , Glioma/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Aloenxertos , Animais , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Glioma/radioterapia , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos , Camundongos Knockout , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Radiação , Fator de Transcrição STAT3/metabolismo
20.
Mol Cancer Ther ; 14(2): 419-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25522764

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor. Radiotherapy fails to eliminate subpopulations of stem-like tumor-propagating cells (TPC), resulting in tumor regrowth. To identify kinases that promote TPC self-renewal rather than increasing proliferation in human GBM cultures, we screened a library of 54 nonselective tool compounds and determined their kinase inhibitor profiles in vitro. Most compounds inhibited aurora kinase (AURK) activity and blocked TPC self-renewal, while inducing GBM cell polynucleation and apoptosis. To prevent regrowth by TPCs, we used a priming dose of radiation followed by incubation with the pan-AURK inhibitor VX680 to block self-renewal and induce apoptosis in GBM cultures. In mice xenografted with human GBM cells, radiotherapy followed by VX680 treatment resulted in reduced tumor growth and increased survival relative to either monotherapy alone or VX680 treatment before radiation. Our results indicate that AURK inhibition, subsequent to radiation, may enhance the efficacy of radiotherapy by targeting radioresistant TPCs in human GBMs.


Assuntos
Aurora Quinases/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Aurora Quinases/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA