Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 86(2): 1021-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090118

RESUMO

The four Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded interferon (IFN) regulatory factor homologues (vIRF1 to vIRF4) are used to counter innate immune defenses and suppress p53. The vIRF genes are arranged in tandem but differ in function and expression. In KSHV-infected effusion lymphoma lines, K10.5/vIRF3 and K11/vIRF2 mRNAs are readily detected during latency, whereas K9/vIRF1 and K10/vIRF4 mRNAs are upregulated during reactivation. Here we show that the K10/vIRF4 promoter responds to the lytic switch protein RTA in KSHV-infected cells but is essentially unresponsive in uninfected cells. Coexpression of RTA with vIRF4 is sufficient to restore regulation, a property not shared by other vIRFs. The K9/vIRF1 promoter behaves similarly, and production of infectious virus is enhanced by the presence of vIRF4. Synergy requires the DNA-binding domain (DBD) and C-terminal IRF homology regions of vIRF4. Mutations of arginine residues within the putative DNA recognition helix of vIRF4 or the invariant cysteines of the adjacent CxxC motif abolish cooperation with RTA, in the latter case by preventing self-association. The oligomerization and transactivation functions of RTA are also essential for synergy. The K10/vIRF4 promoter contains two transcription start sites (TSSs), and a 105-bp fragment containing the proximal promoter is responsive to vIRF4/RTA. Binding of a cellular factor(s) to this fragment is altered when both viral proteins are present, suggesting a possible mechanism for transcriptional synergy. Reliance on coregulators encoded by either the host or viral genome provides an elegant strategy for expanding the regulatory potential of a master regulator, such as RTA.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Fatores Reguladores de Interferon/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Dados de Sequência Molecular , Ligação Proteica , Transativadores/química , Transativadores/genética , Ativação Transcricional , Proteínas Virais/química , Proteínas Virais/genética
2.
J Virol ; 84(3): 1334-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906914

RESUMO

For Kaposi's sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8 [HHV8]), the switch from latency to active lytic replication requires RTA, the product of open reading frame 50 (ORF50). RTA activates transcription from nearly 40 early and delayed-early viral promoters, mainly through interactions with cellular DNA binding proteins, such as CSL/RBP-Jkappa, Oct-1, C/EBPalpha, and c-Jun. Reliance on cellular coregulators may allow KSHV to adjust its lytic program to suit different cellular contexts or interpret signals from the outside. CSL is a key component of the Notch signaling pathway and is targeted by several viruses. A search with known CSL binding sequences from cellular genes found at least 260 matches in the KSHV genome, many from regions containing known or suspected lytic promoters. Analysis of clustered sites located immediately upstream of ORF70 (thymidylate synthase), ORF19 (tegument protein), and ORF47 (glycoprotein L) uncovered RTA-responsive promoters that were validated using mRNAs isolated from KSHV-infected cells undergoing lytic reactivation. Notably, ORF19 behaves as a true late gene, indicating that RTA regulates all three phases of the lytic program. For each new promoter, the response to RTA was dependent on CSL, and 5 of the 10 candidate sites were shown to bind CSL in vitro. Analysis of individual sites highlighted the importance of a cytosine residue flanking the core CSL binding sequence. These findings broaden the role for CSL in coordinating the KSHV lytic gene expression program and help to define a signature motif for functional CSL sites within the viral genome.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Humano 6/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Sequência de Bases , Primers do DNA , Genes Virais , Células HeLa , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Virol ; 84(5): 2318-30, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20032179

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells express the latency-associated nuclear antigen (LANA) involved in the regulation of host and viral gene expression and maintenance of the KSHV latent episome. Performance of these diverse functions involves a 7-amino-acid chromatin-binding motif (CBM) situated at the amino terminus of LANA that is capable of binding directly to nucleosomes. LANA interacts with additional chromatin components, including methyl-CpG-binding protein 2 (MeCP2). Here, we show that the carboxy-terminal DNA-binding/dimerization domain of LANA provides the principal interaction with MeCP2 but that this association is modulated by the CBM. Both domains are required for LANA to colocalize with MeCP2 at chromocenters, regions of extensive pericentric heterochromatin that can be imaged by fluorescence microscopy. Within MeCP2, the methyl-CpG-binding domain (MBD) is the primary determinant for chromatin localization and acts together with the adjacent repression domains (the transcription repression domain [TRD] and the corepressor-interacting domain [CRID]) to redirect LANA to chromocenters. MeCP2 facilitates repression by LANA bound to the KSHV terminal repeats, a function that requires the MeCP2 C terminus in addition to the MBD and CRID/TRD. LANA and MeCP2 can also cooperate to stimulate transcription of the human E2F1 promoter, which lacks a LANA DNA-binding sequence, but this function requires both the N and C termini of LANA. The ability of LANA to establish multivalent interactions with histones and chromatin-binding proteins such as MeCP2 would enable LANA to direct regulatory complexes to specific chromosomal sites and thereby achieve stable reprogramming of cellular gene expression in latently infected cells.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Sequência de Aminoácidos , Animais , Antígenos Virais/química , Antígenos Virais/genética , Células HeLa , Heterocromatina/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas Nucleares/química , Proteínas Nucleares/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Latência Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA