Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 145(1): 154-167, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34373893

RESUMO

There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi→spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.


Assuntos
Locus Cerúleo , Neuralgia , Animais , Comorbidade , Depressão , Humanos , Locus Cerúleo/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Ratos
2.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743067

RESUMO

Netrin-1, a chemoattractant expressed by floor plate cells, and one of its receptors (deleted in colorectal cancer) has been associated with pronociceptive actions in a number of pain conditions. Here, we addressed the question of whether spinal TRPC4/C5 or TRPA1 are among the downstream receptors contributing to pronociceptive actions induced by netrin-1. The experiments were performed on rats using a chronic intrathecal catheter for administration of netrin-1 and antagonists of TRPC4/C5 or TRPA1. Pain sensitivity was assessed behaviorally by using mechanical and heat stimuli. Effect on the discharge rate of rostral ventromedial medullary (RVM) pain control neurons was studied in lightly anesthetized animals. Netrin-1, in a dose-related fashion, induced mechanical hypersensitivity that lasted up to three weeks. Netrin-1 had no effect on heat nociception. Mechanical hypersensitivity induced by netrin-1 was attenuated by TRPA1 antagonist Chembridge-5861528 and by the control analgesic compound pregabalin both during the early (first two days) and late (third week) phase of hypersensitivity. TRPC4/C5 antagonist ML-204 had a weak antihypersensitivity effect that was only in the early phase, whereas TRPC4/C5 antagonist HC-070 had no effect on hypersensitivity induced by netrin-1. The discharge rate in pronociceptive ON-like RVM neurons was increased by netrin-1 during the late but not acute phase, whereas netrin-1 had no effect on the discharge rate of antinociceptive RVM OFF-like neurons. The results suggest that spinal TRPA1 receptors and pronociceptive RVM ON-like neurons are involved in the maintenance of submodality-selective pronociceptive actions induced by netrin-1 in the spinal cord.


Assuntos
Hiperalgesia , Limiar da Dor , Animais , Hiperalgesia/induzido quimicamente , Netrina-1/farmacologia , Dor , Ratos , Ratos Wistar , Canal de Cátion TRPA1
3.
J Neurophysiol ; 124(3): 790-801, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755331

RESUMO

Descending facilitatory circuitry that involves the rostroventromedial medulla (RVM) exerts a significant role in the development of antinociceptive tolerance and hyperalgesia following chronic morphine treatment. The role of the RVM in the development of antinociceptive tolerance to oxycodone, another clinically used strong opioid, is not yet known. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, attenuates opioid antinociceptive tolerance, but its effect on RVM cell discharge in opioid-tolerant animals is not known. Here, we compared chronic effects of morphine and oxycodone on the discharge properties of RVM cells and attempted to attenuate chronic treatment-induced changes with ketamine. Parallel recordings of RVM cell discharge and limb withdrawal response were performed under light pentobarbital anesthesia in male rats following sustained systemic treatment with morphine or oxycodone at equianalgesic doses. Ongoing activity and the response to noxious heat and pinch were determined in pronociceptive RVM ON-cells and antinociceptive OFF-cells on the sixth treatment day. Proportions of RVM cell types were not changed. Chronic oxycodone induced antinociceptive tolerance both in limb withdrawal and RVM cell activity. Chronic morphine induced antinociceptive tolerance in limb withdrawal that was accompanied by pronociceptive heat response changes in RVM ON- and OFF-cells. A behaviorally subantinociceptive dose of acute ketamine reversed antinociceptive tolerance both to morphine and oxycodone in limb withdrawal and reversed the chronic morphine-induced pronociceptive discharge changes in RVM cells. The results indicate that an NMDA receptor-dependent descending pronociceptive circuitry involving the RVM has an important role in behavioral antinociceptive tolerance to morphine but not oxycodone.NEW & NOTEWORTHY Morphine and oxycodone are two clinically used strong opioids. Chronic treatment with oxycodone as well as morphine can lead to analgesic tolerance and paradoxical hyperalgesia. Here we show that an N-methyl-d-aspartate receptor-dependent pronociceptive change in discharge properties of rostroventromedial medullary neurons controlling spinal nociception has an important role in antinociceptive tolerance to morphine but not oxycodone. Interestingly, chronic oxycodone did not induce pronociceptive changes in the rostroventromedial medulla.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Ketamina/farmacologia , Bulbo/efeitos dos fármacos , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Oxicodona/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Analgésicos Opioides/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios , Ketamina/administração & dosagem , Masculino , Morfina/administração & dosagem , Oxicodona/administração & dosagem , Ratos , Ratos Sprague-Dawley
4.
Cereb Cortex ; 27(11): 5343-5352, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968804

RESUMO

The human prefrontal cortex (PFC) has been shown to be important for metacognition, the capacity to monitor and control one's own cognitive processes. Here we dissected the neural architecture of somatosensory metacognition using navigated single-pulse transcranial magnetic stimulation (TMS) to modulate tactile working memory (WM) processing. We asked subjects to perform tactile WM tasks and to give a confidence rating for their performance after each trial. We circumvented the challenge of interindividual variability in functional brain anatomy by applying TMS to two PFC areas that, according to tractography, were neurally connected with the primary somatosensory cortex (S1): one area in the superior frontal gyrus (SFG), another in the middle frontal gyrus (MFG). These two PFC locations and a control cortical area were stimulated during both spatial and temporal tactile WM tasks. We found that tractography-guided TMS of the SFG area selectively enhanced metacognitive accuracy of tactile temporal, but not spatial WM. Stimulation of the MFG area that was also neurally connected with the S1 had no such effect on metacognitive accuracy of either the temporal or spatial tactile WM. Our findings provide causal evidence that the PFC contains distinct neuroanatomical substrates for introspective accuracy of tactile WM.


Assuntos
Memória de Curto Prazo/fisiologia , Metacognição/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção do Tato/fisiologia , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Dedos/fisiologia , Humanos , Interocepção/fisiologia , Julgamento/fisiologia , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Estimulação Física , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
5.
J Neurophysiol ; 117(3): 1200-1214, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28053243

RESUMO

Stimulation of the secondary somatosensory cortex (S2) has attenuated pain in humans and inflammatory nociception in animals. Here we studied S2 stimulation-induced antinociception and its underlying mechanisms in an experimental animal model of neuropathy induced by spinal nerve ligation (SNL). Effect of S2 stimulation on heat-evoked limb withdrawal latency was assessed in lightly anesthetized rats that were divided into three groups based on prior surgery and monofilament testing before induction of anesthesia: 1) sham-operated group and 2) hypersensitive and 3) nonhypersensitive (mechanically) SNL groups. In a group of hypersensitive SNL animals, a 5-HT1A receptor agonist was microinjected into the rostroventromedial medulla (RVM) to assess whether autoinhibition of serotonergic cell bodies blocks antinociception. Additionally, effect of S2 stimulation on pronociceptive ON-cells and antinociceptive OFF-cells in the RVM or nociceptive spinal wide dynamic range (WDR) neurons were assessed in anesthetized hypersensitive SNL animals. S2 stimulation induced antinociception in hypersensitive but not in nonhypersensitive SNL or sham-operated animals. Antinociception was prevented by a 5-HT1A receptor agonist in the RVM. Antinociception was associated with decreased duration of heat-evoked response in RVM ON-cells. In spinal WDR neurons, heat-evoked discharge was delayed by S2 stimulation, and this antinociceptive effect was prevented by blocking spinal 5-HT1A receptors. The results indicate that S2 stimulation suppresses nociception in SNL animals if SNL is associated with tactile allodynia-like hypersensitivity. In hypersensitive SNL animals, S2 stimulation induces antinociception mediated by medullospinal serotonergic pathways acting on the spinal 5-HT1A receptor, and partly through reduction of the RVM ON-cell discharge.NEW & NOTEWORTHY Stimulation of S2 cortex, but not that of an adjacent cortical area, induced descending heat antinociception in rats with the spinal nerve ligation-induced model of neuropathy. Antinociception was bilateral, and it involved suppression of pronociceptive medullary cells and activation of serotonergic pathways that act on the spinal 5-HT1A receptor. S2 stimulation failed to induce descending antinociceptive effect in sham-operated controls or in nerve-ligated animals that had not developed mechanical hypersensitivity.


Assuntos
Estimulação Elétrica , Neuralgia/terapia , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Córtex Somatossensorial/fisiologia , Medula Espinal/metabolismo , Nervos Espinhais , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Lateralidade Funcional , Hiperalgesia/fisiopatologia , Bulbo/citologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Medula Espinal/citologia
6.
Brain Behav Immun ; 58: 107-117, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27262531

RESUMO

Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII+ spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα)+ microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII+/CD172a+ ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII+ microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain.


Assuntos
Analgésicos/administração & dosagem , Encéfalo/imunologia , Encefalite/imunologia , Macrófagos/imunologia , Microglia/imunologia , Minociclina/administração & dosagem , Neuralgia/imunologia , Medula Espinal/imunologia , Animais , Ansiolíticos/administração & dosagem , Ansiedade , Hiperalgesia/prevenção & controle , Masculino , Neuralgia/prevenção & controle , Ratos Wistar , Nervo Isquiático/lesões
7.
Cereb Cortex ; 25(1): 161-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23960209

RESUMO

It has proven difficult to separate functional areas in the prefrontal cortex (PFC), an area implicated in attention, memory, and distraction handling. Here, we assessed in healthy human subjects whether PFC subareas have different roles in top-down regulation of sensory functions by determining how the neural links between the PFC and the primary somatosensory cortex (S1) modulate tactile perceptions. Anatomical connections between the S1 representation area of the cutaneous test site and the PFC were determined using probabilistic tractography. Single-pulse navigated transcranial magnetic stimulation of the middle frontal gyrus-S1 link, but not that of the superior frontal gyrus-S1 link, impaired the ability to discriminate between single and twin tactile pulses. The impairment occurred within a restricted time window and skin area. The spatially and temporally organized top-down control of tactile discrimination through a segregated PFC-S1 pathway suggests functional specialization of PFC subareas in fine-tuned regulation of information processing.


Assuntos
Discriminação Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
8.
Pharmacol Res ; 90: 58-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25304183

RESUMO

Among brain structures receiving efferent projections from the histaminergic tuberomammillary nucleus is the pontine locus coeruleus (LC) involved in descending noradrenergic control of pain. Here we studied whether histamine in the LC is involved in descending regulation of neuropathic hypersensitivity. Peripheral neuropathy was induced by unilateral spinal nerve ligation in the rat with a chronic intracerebral and intrathecal catheter for drug administrations. Mechanical hypersensitivity in the injured limb was assessed by monofilaments. Heat nociception was assessed by determining radiant heat-induced paw flick. Histamine in the LC produced a dose-related (1-10µg) mechanical antihypersensitivity effect (maximum effect at 15min and duration of effect 30min), without influence on heat nociception. Pretreatment of LC with zolantidine (histamine H2 receptor antagonist), but not with pyrilamine (histamine H1 receptor antagonist), and spinal administration of atipamezole (an α2-adrenoceptor antagonist), prazosine (an α1-adrenoceptor antagonist) or bicuculline (a GABAA receptor antagonist) attenuated the antihypersensitivity effect of histamine. The histamine-induced antihypersensitivity effect was also reduced by pretreatment of LC with fadolmidine, an α2-adrenoceptor agonist inducing autoinhibition of noradrenergic cell bodies. Zolantidine or pyrilamine alone in the LC failed to influence pain behavior, while A-960656 (histamine H3 receptor antagonist) suppressed hypersensitivity. A plausible explanation for these findings is that histamine, due to excitatory action mediated by the histamine H2 receptor on noradrenergic cell bodies, promotes descending spinal α1/2-adrenoceptor-mediated inhibition of neuropathic hypersensitivity. Blocking the autoinhibitory histamine H3 receptor on histaminergic nerve terminals in the LC facilitates release of histamine and thereby, increases descending noradrenergic pain inhibition.


Assuntos
Histamina/fisiologia , Hiperalgesia/fisiopatologia , Locus Cerúleo/fisiologia , Neuralgia/fisiopatologia , Neurônios Adrenérgicos/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Benzotiazóis/farmacologia , Bicuculina/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas dos Receptores H2 da Histamina/farmacologia , Temperatura Alta , Imidazóis/farmacologia , Indanos/farmacologia , Masculino , Fenoxipropanolaminas/farmacologia , Estimulação Física , Piperidinas/farmacologia , Prazosina/farmacologia , Ratos , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Receptores Histamínicos/fisiologia , Nervos Espinhais/lesões
9.
Exp Brain Res ; 232(7): 2179-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24668131

RESUMO

Two-point discrimination threshold is commonly used for assessing tactile spatial resolution. Since the effect of temporal features of cutaneous test stimulation on spatial discrimination ability is not yet well known, we determined whether the ability to discriminate between two stimulus locations varies with the interstimulus interval (ISI) of sequentially presented tactile stimuli or the length of the stimulus train. Electrotactile stimuli were applied to one or two locations on the skin of the thenar eminence of the hand in healthy human subjects. Tactile discrimination ability was determined using methods based on the signal detection theory allowing the assessment of sensory performance, independent of the subject's response criterion. With stimulus pairs, the ability to discriminate spatial features of stimulation (one location vs. two stimulus locations 4 cm apart) was improved when the ISI was equal to or longer than that required for tactile temporal discrimination. With stimulus trains, the ability to discriminate spatial features of stimulation was significantly improved with an increase in the stimulus train (from 3 to 11 pulses corresponding to train lengths from 40 to 200 ms). These results indicate that temporal features of tactile stimulation significantly influence sensory performance in a tactile spatial discrimination task. Precise control of temporal stimulus parameters should help to reduce variations in results on the two-point discrimination threshold.


Assuntos
Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/fisiologia , Tato , Adulto , Feminino , Mãos/inervação , Humanos , Masculino , Estimulação Física , Psicofísica , Curva ROC , Tempo de Reação , Percepção Espacial , Fatores de Tempo , Tato/fisiologia , Adulto Jovem
10.
Neuromodulation ; 17(3): 226-34; discussion 234-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612269

RESUMO

OBJECTIVES: The aim was to compare the effects of high-frequency spinal cord stimulation (HF-SCS) at subparesthetic intensity with conventional SCS in rat models of different types of pain. In addition, microrecordings of afferent activity in the dorsal columns during both types of SCS were performed to elucidate their mode of action. MATERIALS AND METHODS: Miniature SCS electrodes were implanted in all rats. One group was submitted to the spared nerve injury procedure (SNI) and another to inflammatory pain after carrageenan injection into a hind paw. All animals were tested for hypersensitivity to normally innocuous tactile and thermal stimuli. One group of normal healthy rats was submitted to acute nociceptive (pinch, heat) pain. Microrecording of afferent activity in the gracile nucleus (GN) was performed in a group of nerve-lesioned rats responding to conventional SCS. RESULTS: HF-SCS at 500, 1,000, or 10,000 Hz at subparesthetic amplitudes produced similar reductions in hypersensitivity due to nerve lesion as did conventional SCS at 50 Hz. HF-SCS showed no effect on thermal pain. A trial to rescue non-responders to conventional SCS using HF-SCS was not successful. There were no effects either of conventional or of HF-SCS on acute or inflammatory pain. Conventional SCS produced massive activation in the GN but no activation during HF-SCS, though normal peripherally evoked afferent activity remained. CONCLUSIONS: Conventional SCS proved equally effective to HF-SCS in various pain models. As no activity is conveyed rostrally in subparesthetic HF-SCS, we hypothesize that its mechanisms of action are primarily segmental.


Assuntos
Modelos Animais de Doenças , Manejo da Dor/métodos , Dor/fisiopatologia , Estimulação da Medula Espinal/métodos , Vias Aferentes/fisiopatologia , Animais , Carragenina/toxicidade , Temperatura Baixa/efeitos adversos , Denervação , Eletrodos Implantados , , Temperatura Alta/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/terapia , Inflamação/fisiopatologia , Masculino , Bulbo/fisiopatologia , Microeletrodos , Dor/classificação , Dor/etiologia , Pressão/efeitos adversos , Ratos , Ratos Wistar , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Corno Dorsal da Medula Espinal/fisiopatologia
11.
Neurosci Lett ; 813: 137415, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37544582

RESUMO

Here we studied whether the sex-related difference in mechanical hypersensitivity induced by neuropathy is associated with the discharge rate of medullary pain control neurons. We performed experiments in male and female rats with spared nerve injury (SNI) model of peripheral neuropathy. Mechanical hypersensitivity was assessed behaviorally by monofilaments. Discharge rates of pain-control neurons were determined using in vivo single unit recordings under light anesthesia. Recording targets were two medullary nuclei involved in descending pain control: the rostral ventromedial medulla (RVM) and the medullary dorsal reticular nucleus (DRt). Based on the response to peripheral noxious stimulus, neurons were classified as pronociceptive RVM ON-like or DRt neurons, or antinociceptive RVM OFF-like neurons. Behavioral results indicated that the mechanical hypersensitivity induced by SNI was significantly stronger in females than males. The ongoing discharge rates of pronociceptive RVM ON-like neurons were higher and those of antinociceptive RVM OFF-like neurons lower in SNI females than SNI males. Ongoing discharge rates of pronociceptive DRt neurons were not significantly different between SNI females and males. The results suggest that a sex difference in the discharge rate of pain control neurons in the RVM but not DRt may contribute to the maintenance of stronger neuropathic hypersensitivity in females.


Assuntos
Alta do Paciente , Doenças do Sistema Nervoso Periférico , Feminino , Ratos , Masculino , Animais , Humanos , Hiperalgesia , Dor , Neurônios/fisiologia , Bulbo , Analgésicos
12.
Pain ; 164(11): 2477-2490, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390363

RESUMO

ABSTRACT: Osteoarthritis (OA), the most common joint disorder worldwide, is characterized by progressive degeneration of articular and periarticular structures, leading to physical and emotional impairments that greatly affect the quality of life of patients. Unfortunately, no therapy has been able to halt the progression of the disease. Owing to the complexity of OA, most animal models are only able to mimic a specific stage or feature of the human disorder. In this work, we demonstrate the intraarticular injection of kaolin or carrageenan leads to the progressive degeneration of the rat's knee joint, accompanied by mechanical hyperalgesia and allodynia, gait impairments (reduced contact area of the affected limb), and radiological and histopathological findings concomitant with the development of human grade 4 OA. In addition, animals also display emotional impairments 4 weeks after induction, namely, anxious and depressive-like behaviour, important and common comorbidities of human OA patients. Overall, prolonging kaolin or carrageenan-induced monoarthritis mimics several important physical and psychological features of human OA in both male and female rodents and could be further applied in long-term studies of OA-associated chronic pain.

13.
Anesthesiology ; 117(1): 137-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22588108

RESUMO

BACKGROUND: The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed on nociceptive primary afferent nerve fibers. On the distal ending, it is involved in transduction of noxious stimuli, and on the proximal ending (within the spinal dorsal horn), it regulates transmission of nociceptive signals. Here we studied whether the cutaneous or spinal TRPA1 ion channel contributes to mechanical hypersensitivity or guarding, an index of spontaneous pain, in an experimental model of postoperative pain in the rat. METHODS: A skin plus deep-tissue incision was performed under general anesthesia in the plantar skin of one hind paw, after which the incised skin was closed with sutures. Postoperative pain and hypersensitivity were assessed 24-48 h after the operation. Guarding pain was assessed by scoring the hind-paw position. Mechanical hypersensitivity was assessed with a calibrated series of monofilaments applied to the wound area in the operated paw or the contralateral control paw. Chembridge-5861528, a TRPA1 channel antagonist, was administered intaperitoneally (10-30 mg/kg), intraplantarly (10-30 µg), or intrathecally (10 µg) in attempts to suppress guarding and hypersensitivity. RESULTS: Intraperitoneal or ipsi- but not contralateral intraplantar treatment with Chembridge-5861528 reduced mechanical hypersensitivity and guarding in the operated limb. Intrathecal treatment attenuated hypersensitivity but not guarding. Intraplantar Chembridge-5861528 suppressed preferentially mechanical hyperalgesia and intrathecal Chembridge-5861528 tactile allodynia. CONCLUSIONS: The TRPA1 channel in the skin contributes to sustained as well noxious mechanical stimulus-evoked postoperative pain, whereas the spinal TRPA1 channel contributes predominantly to innocuous mechanical stimulus-evoked postoperative pain.


Assuntos
Hiperalgesia/etiologia , Dor Pós-Operatória/etiologia , Canais de Cátion TRPC/fisiologia , Animais , Modelos Animais de Doenças , Hipnóticos e Sedativos/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Oximas/farmacologia , Ratos , Ratos Wistar , Canal de Cátion TRPA1 , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia
14.
Pharmacol Res ; 65(1): 149-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133672

RESUMO

Peripheral diabetic neuropathy (PDN) is a devastating complication of diabetes mellitus (DM). Here we test the hypothesis that the transient receptor potential ankyrin 1 (TRPA1) ion channel on primary afferent nerve fibers is involved in the pathogenesis of PDN, due to sustained activation by reactive compounds generated in DM. DM was induced by streptozotocin in rats that were treated daily for 28 days with a TRPA1 channel antagonist (Chembridge-5861528) or vehicle. Laser Doppler flow method was used for assessing axon reflex induced by intraplantar injection of a TRPA1 channel agonist (cinnamaldehyde) and immunohistochemistry to assess substance P-like innervation of the skin. In vitro calcium imaging and patch clamp were used to assess whether endogenous TRPA1 agonists (4-hydroxynonenal and methylglyoxal) generated in DM induce sustained activation of the TRPA1 channel. Axon reflex induced by a TRPA1 channel agonist in the plantar skin was suppressed and the number of substance P-like immunoreactive nerve fibers was decreased 4 weeks after induction of DM. Prolonged treatment with Chembridge-5861528 reduced the DM-induced attenuation of the cutaneous axon reflex and loss of substance P-like immunoreactive nerve fibers. Moreover, in vitro calcium imaging and patch clamp results indicated that reactive compounds generated in DM (4-hydroxynonenal and methylglyoxal) produced sustained activations of the TRPA1 channel, a prerequisite for adverse long-term effects. The results indicate that the TRPA1 channel exerts an important role in the pathogenesis of PDN. Blocking the TRPA1 channel provides a selective disease-modifying treatment of PDN.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Fibras Nervosas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Pele/inervação , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Células HEK293 , Humanos , Masculino , Potenciais da Membrana , Fibras Nervosas/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Limiar da Dor/efeitos dos fármacos , Ratos , Reflexo/efeitos dos fármacos , Substância P/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Fatores de Tempo , Transfecção , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
15.
Neurosci Biobehav Rev ; 139: 104745, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716873

RESUMO

More recently, the thalamic mediodorsal (MD) and ventromedial (VM) nuclei have been revealed to be functioned as 'nociceptive discriminator' in discriminating noxious and innocuous peripheral afferents, and exhibits distinct different descending controls of nociception. Of particularly importance, the function of thalamic nuclei in engaging descending modulation of nociception is 'silent' or inactive during the physiological state as well as in condition exposed to insufficient noxious stimulation. Once initiation by sufficient noxious or innocuous C-afferents associated with temporal and spatial summation, the thalamic MD and VM nuclei exhibit salient, different effects: facilitation and inhibition, on noxious mechanically and heat evoked nociception, respectively. Based on series of experimental evidence, we here summarize a novel hypothesis involving thalamic MD and VM nuclei functioned as 'promoter' in initiating descending facilitation and inhibition of pain with specific spatiotemporal characteristics. We further hypothesize that clinical remedy in targeting thalamic VM nucleus by enhancing its activities in recruiting inhibition alone or decreasing thalamic MD nucleus induced facilitation may provide promising way in effectively control of pathological pain.


Assuntos
Nociceptividade , Dor , Animais , Humanos , Nociceptividade/fisiologia , Ratos , Ratos Sprague-Dawley , Núcleos Talâmicos , Tálamo
16.
Brain Res ; 1797: 148128, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265669

RESUMO

Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.


Assuntos
Neuralgia , Receptores de GABA-A , Feminino , Ratos , Masculino , Animais , Muscimol/farmacologia , Neuralgia/tratamento farmacológico , Tonsila do Cerebelo , Receptores de Neurotransmissores , Antagonistas de Receptores de GABA-A/farmacologia , Receptores Adrenérgicos
17.
Pharmacol Rep ; 73(2): 672-679, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389723

RESUMO

BACKGROUND: Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. METHODS: Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. RESULTS: DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. CONCLUSIONS: Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.


Assuntos
Hiperalgesia/fisiopatologia , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Flavanonas/farmacologia , Flavonoides/farmacologia , Glucosídeos/farmacologia , Hiperalgesia/prevenção & controle , Isoflavonas/farmacologia , Masculino , Ratos , Ratos Wistar , Esfingosina/toxicidade
18.
Neuroimage ; 49(1): 1091-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19643184

RESUMO

Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM.


Assuntos
Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Tato/fisiologia , Estimulação Magnética Transcraniana , Imagem de Difusão por Ressonância Magnética , Estimulação Elétrica , Eletroculografia , Potenciais Somatossensoriais Evocados/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais/fisiologia , Tempo de Reação/fisiologia , Fenômenos Fisiológicos da Pele , Adulto Jovem
19.
Exp Brain Res ; 201(2): 283-96, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19826796

RESUMO

We studied whether stimulation of the primary motor cortex (M1) attenuates pain-related spinal withdrawal responses of neuropathic and healthy control rats, and whether the descending antinociceptive effect is relayed through the noradrenergic locus coeruleus (LC). The assessments of the noxious heat-evoked limb withdrawals reflecting spinal nociception and recordings of single LC units were performed in spinal nerve-ligated neuropathic and sham-operated control rats under light pentobarbital anesthesia. Electric stimulation of M1 produced equally strong spinal antinociception in neuropathic and control rats. Following microinjection into M1, a group I metabotropic glutamate receptor agonist (DHPG; 10 nmol) and a high (25 nmol) but not low (2.5 nmol) dose of glutamate slightly increased on-going discharge rates of LC neurons in neuropathic but not in control animals. Influence of electric stimulation of M1 on LC neurons was studied only in the neuropathic group, in which discharge rates of LC neurons were increased by electric M1 stimulation. Lidocaine block of the LC or block of descending noradrenergic influence by intrathecal administration of a alpha(2)-adrenoceptor antagonist failed to produce a significant attenuation of the spinal antinociceptive effect induced by electric M1 stimulation in the neuropathic or the sham group. The results indicate that stimulation of the rat M1 induces spinal antinociception in neuropathic as well as control conditions. While M1 stimulation may activate the LC, particularly in the neuropathic group, the contribution of coeruleospinal noradrenergic pathways may not be critical for the spinal antinociceptive effect induced by M1 stimulation.


Assuntos
Terapia por Estimulação Elétrica/métodos , Locus Cerúleo/fisiopatologia , Córtex Motor/fisiologia , Manejo da Dor , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/terapia , Antagonistas de Receptores Adrenérgicos alfa 2 , Antagonistas Adrenérgicos alfa/farmacologia , Anestésicos Locais/administração & dosagem , Anestésicos Locais/farmacologia , Animais , Vias Autônomas/fisiologia , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Temperatura Alta , Injeções Espinhais , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Ligadura , Masculino , Microinjeções , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/fisiologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Resorcinóis/farmacologia , Medula Espinal , Nervos Espinhais/patologia
20.
Neuroscience ; 433: 81-93, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147510

RESUMO

Here we investigated effects of intramuscular (i.m.) heating-needle stimulation on persistent muscle nociception evoked by i.m. injection of different doses (50-200 µl) of complete Freund's adjuvant (CFA) in rats. Paw withdrawal reflexes evoked by noxious mechanical and heat stimulation as well as hind limb swelling were determined prior to and two weeks after the CFA injection. The unilateral injection of CFA induced a dose-related and long-lasting (5-14 d), bilateral secondary mechanical hyperalgesia and heat hypoalgesia associated with long-term limb swelling. A period of 30-45 min 43 °C heating-needle stimulation significantly enhanced the i.m. CFA-induced bilateral heat hypoalgesia and alleviated hind limb swelling. In contrast, 30-45 min 46 °C heating-needle stimulation markedly enhanced both mechanical hyperalgesia and heat hypoalgesia, but failed to influence the CFA-induced hind limb swelling. Microinjection of P2X3 receptor antagonist A-317491 (0.5-4.5 nmol/0.5 µl) into the thalamic ventromedial (VM) nucleus dose-dependently inhibited the 43 °C and 46 °C heating-needle stimulation-induced heat hypoalgesia, whereas the 46 °C heating-needle stimulation-induced mechanical hyperalgesia was significantly prevented by microinjection of A-317491 into the thalamic mediodorsal (MD) nucleus. In contrast, the hind limb swelling was not affected by the microinjection of A-317491 into the thalamic VM or MD nucleus. The present study indicates that in the CFA-induced persistent muscle nociception condition, 43 °C heating-needle stimulation selectively increases descending inhibition, which effect is modulated by the thalamic VM nucleus. In addition to the antinociceptive role of P2X3 receptors in the thalamic VM nucleus, P2X3 receptors within the thalamic MD nucleus participate in the descending facilitation evoked by i.m. 46 °C heating-needle stimulation.


Assuntos
Nociceptividade , Receptores Purinérgicos P2X3 , Animais , Calefação , Hiperalgesia/terapia , Inflamação , Músculos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA