Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nano Lett ; 21(20): 8785-8793, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34614348

RESUMO

Monitoring dynamic processes in complex cellular environments requires the integration of uniformly distributed detectors within such three-dimensional (3D) networks, to an extent that the sensor could provide real-time information on nearby perturbations in a non-invasive manner. In this context, the development of 3D-printed structures that can function as both sensors and cell culture platforms emerges as a promising strategy, not only for mimicking a specific cell niche but also toward identifying its characteristic physicochemical conditions, such as concentration gradients. We present herein a 3D cancer model that incorporates a hydrogel-based scaffold containing gold nanorods. In addition to sustaining cell growth, the printed nanocomposite inks display the ability to uncover drug diffusion profiles by surface-enhanced Raman scattering, with high spatiotemporal resolution. We additionally demonstrate that the acquired information could pave the way to designing novel strategies for drug discovery in cancer therapy, through correlation of drug diffusion with cell death.


Assuntos
Nanocompostos , Nanotubos , Ouro , Hidrogéis , Análise Espectral Raman
2.
Nanomedicine ; 29: 102232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562860

RESUMO

Healing or reconstruction of critical-sized bone defects is still challenging in orthopaedic practice. In this study, we developed a new approach to control the degradation and improve the bone regeneration of the AZ31 magnesium substrate, fabricated as mesh cage implants. Subsequently, bilayer nanocomposite coating was carried out using polycaprolactone (PCL) and nano-hydroxyapatite (nHA) by dip-coating and electrospinning. Lastly, the healing capacity of the implants was studied in New Zealand White (NZW) rabbit critical-sized femur bone defects. X-ray analysis showed the coated implant group bridged and healed the critical defects 100% during four weeks of post-implantation. Micro-computed tomography (Micro-CT) study showed higher total bone volume (21.10%), trabecular thickness (0.73), and total porosity (85.71%) with bilayer coated implants than uncoated. Our results showed that nanocomposite coated implants controlled the in vivo degradation and improved bioactivity. Hence, the coated implants can be used as a promising bioresorbable implant for critical segmental bone defect repair applications.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Nanoestruturas/química , Próteses e Implantes , Ligas/química , Ligas/farmacologia , Animais , Durapatita/farmacologia , Fêmur/efeitos dos fármacos , Fêmur/crescimento & desenvolvimento , Humanos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Poliésteres/química , Poliésteres/farmacologia , Coelhos , Microtomografia por Raio-X
3.
Anal Chem ; 91(5): 3533-3538, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712342

RESUMO

Strategies for simultaneous detection and detoxification of Hg2+ using a single sensor from biological and environmental samples are limited and have not been realized in living organisms so far. We report a highly selective, small molecule "turn-on" fluorescent sensor, PYDMSA, based on the cationic dye Pyronin Y (PY) and chelating agent meso-2,3-dimercaptosuccinic acid (DMSA) for the simultaneous detection and detoxification of inorganic mercury (Hg2+). After Hg2+ detection, concomitant detoxification was carried out with sufficient efficacy in living samples, which makes the sensor unique. PYDMSA exhibits high selectivity for Hg2+ over other competing metal ions with an experimental detection limit of ∼300 pM in aqueous buffer solution. When PYDMSA reacts with Hg2+, the CS-C9 bond in the sensor gets cleaved. This results in the "turn-on" response of the fluorescence probe with a concomitant release of one equivalent of water-soluble Hg2+-DMSA complex which leads to a synchronous detoxifying effect. The sensor by itself is nontoxic to cells in culture and has been used to monitor the real-time uptake of Hg2+ in live cells and zebrafish larvae. Thus, PYDMSA is a unique sensor which can be used to detect and detoxify mercury at the same time in living samples.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Pironina/química , Succímero/química , Animais , Células Cultivadas , Embrião não Mamífero , Células HEK293 , Humanos , Estrutura Molecular , Espectrometria de Fluorescência , Peixe-Zebra
4.
Biomed Mater ; 19(5)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917828

RESUMO

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Assuntos
Regeneração Óssea , Proliferação de Células , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Animais , Linhagem Celular Tumoral , Transdução de Sinais , Sobrevivência Celular , Engenharia Tecidual/métodos , Quitosana/química , Fosfatase Alcalina/metabolismo , Osseointegração , Polímeros/química , Porosidade
5.
ACS Omega ; 8(2): 2377-2388, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687077

RESUMO

This work describes a one-pot synthesis of dendrite-like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex (1) as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex 1. Inverse-gated (IG)13C NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight (M n) polymers ranging from 14 to 73 kDa and molecular weight distributions (M w/M n) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21° and T g ranging between -39 and -55 °C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex (1) can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.

6.
ACS Omega ; 7(19): 16236-16243, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601337

RESUMO

Use of three-dimensional bioprinting for the in vitro engineering of tissues has boomed during the past five years. An increasing number of commercial bioinks are available, with suitable mechanical and rheological characteristics and excellent biocompatibility. However, cell-laden bioinks based on a single polymer do not properly mimic the complex extracellular environment needed to tune cell behavior, as required for tissue and organ formation. Processes such as cell aggregation, migration, and tissue patterning should be dynamically monitored, and progress is being made in these areas, most prominently derived from nanoscience. We review recent developments in tissue bioprinting, cellularized bioink formulation, and cell tracking, from both chemistry and cell biology perspectives. We conclude that an interdisciplinary approach including expertise in polymer science, nanoscience, and cell biology/tissue engineering is required to drive further advancements in this field toward clinical application.

7.
Nanomedicine (Lond) ; 17(25): 1981-2005, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36695290

RESUMO

The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.


Assuntos
Antineoplásicos , COVID-19 , Nanopartículas , Humanos , COVID-19/diagnóstico por imagem , Nanotecnologia/métodos , Diagnóstico por Imagem/métodos , Meios de Contraste , Teste para COVID-19
8.
Mater Sci Eng C Mater Biol Appl ; 109: 110527, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228978

RESUMO

This study describes the preparation of nano-magnesium phosphate (nMP) flakes by one step microwave irradiation method. The synthesized nMP was incorporated with polycaprolactone (PCL), hyperbranched polyglycerol (HPG) and nano-hydroxyapatite (nHA) to fabricate as composite electrospun nanofibrous scaffold for bone tissue engineering applications. The electrospun nanofibers were analyzed by scanning electron microscope, XRD, FTIR, DSC, TGA, and wettability measurement. The nanofibers were smooth, randomly oriented, and surface decorated with nMP. The water contact angle was 32 ± 1° (initial contact angle), which reduces to 0° after 1 min for HPG and nMP containing nanocomposites, while the contact angle of PCL is 104 ± 5°. The nanocomposite scaffolds exhibited higher swelling, biomineralization, and breakages during PBS immersion. The scaffolds were non-cytotoxic to MG63 osteosarcoma cells and hMSCs with higher viability after 72 h. They allowed good adhesion and spreading of these cells when compared to PCL and PCL/nHA electrospun nanofibers. These results indicated that HPG with surface decorated nMP electrospun nanocomposite scaffold can be a promising material for bone tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Compostos de Magnésio/química , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Fosfatos/química , Poliésteres/química , Alicerces Teciduais/química , Linhagem Celular , Humanos , Engenharia Tecidual
9.
Colloids Surf B Biointerfaces ; 172: 690-698, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243223

RESUMO

This current study is aimed towards the fabrication of AZ31 magnesium cylindrical mesh cage implant with circular holes for orthopedic applications. This mesh cage is coated with nanocomposite material containing polycaprolactone (PCL), pluronic F127 and nano hydroxyapatite (nHA) by electrospinning process. Morphology and composition were analyzed by various characterization techniques. Controlled degradation and weight loss of the nanocomposite coated samples in 28 days were observed when compared with uncoated samples in SBF (simulated body fluid). The nanocomposite coated material was not cytotoxic to MG63 osteosarcoma cells. The cell viability, morphology, ALP activity, calcium mineralization and collagen deposition were also better on this when compared to uncoated. Smooth and randomly deposited nanofibers on the mesh cage was observed and the contact angle indicated that the surface is hydrophilic with (initial contact angle of 55 ± 1° and after 10 s 0°) when compared to PCL (99°) coated surface. 2-5 fold higher mRNA expression levels of osteogenic genes namely ALP, BMP2, COL1 and RUNX2 was observed with nanocomposite coated scaffolds than uncoated and PCL coated samples in 14 days. These results indicate the potential use of the nanocomposite coated AZ31 cylindrical mesh cage for segmental bone defect repair and can be used as a degradable implant for orthopedic applications.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Magnésio/farmacologia , Nanoestruturas/química , Quinolinas/farmacologia , Regeneração/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/metabolismo , Humanos , Magnésio/química , Minerais/química , Nanoestruturas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Quinolinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
10.
J Mech Behav Biomed Mater ; 88: 453-462, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218974

RESUMO

A novel one-step preparation of magnesium particles and Pluronic F127 incorporated with calcium sulfate hemihydrate (CSH) and nano-hydroxyapatite (nHA) ready to use injectable or moldable beads was developed for bone tissue regeneration applications. The nanocomposite showed setting time less than 15 min, very good injectability (75-85%) and good mechanical strength (52-80 MPa). Samples immersed in SBF showed controlled degradation (40-45% reduction in weight) in 28 days. The nanocomposite bone graft was cytocompatible against MG63 osteosarcoma cells and increased the osteogenic gene expression by 2-3 folds. These results indicate that it can be a potential defect filling biomaterial for bone tissue regeneration at the fracture site.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Força Compressiva , Magnésio/química , Microesferas , Nanocompostos/química , Poloxâmero/química , Poloxâmero/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Injeções , Teste de Materiais , Poloxâmero/toxicidade , Relação Estrutura-Atividade
11.
Mater Sci Eng C Mater Biol Appl ; 76: 1196-1204, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482486

RESUMO

This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications.


Assuntos
Curcumina/química , Bandagens , Glicerol , Nanofibras , Poliésteres , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Mater Sci Eng C Mater Biol Appl ; 65: 43-50, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157726

RESUMO

AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO3 to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO3 treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359-09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO3 pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Poliésteres/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Corrosão , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Ácido Nítrico/química , Ratos , Espectrometria por Raios X , Propriedades de Superfície
13.
Future Microbiol ; 10(11): 1743-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517598

RESUMO

Biofilms are structured groups of different bacterial species that are responsible for most chronic and recurrent infections. Biofilm-related infections reoccur in approximately 65-80% of cases. Bacteria associated with the biofilm are highly resistant to antibiotics. Knowledge of biofilm formation, its propagation and the resistance associated with it is scant and a multidisciplinary approach is followed to understand the science and develop strategies to address this problem. This article discusses the role of various biochemical factors, molecular mechanisms and altered host environment causes associated with bacterial resistance in biofilm. It also reveals the target sites and different multidisciplinary strategies adapted for destroying or preventing the formation of biofilms.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA