RESUMO
Depression affects a large proportion of patients with epilepsy, and is likely due in part to biological mechanism. Hormonal dysregulation due to the disruptive effects of seizures and interictal epileptiform discharges on the hypothalamic-pituitary-adrenal axis likely contributes to high rates of depression in epilepsy. This paper reviews the largely unexplored role of neuroendocrine factors in epilepsy-related depression, focusing on Growth Hormone (GH). While GH deficiency is traditionally considered a childhood disorder manifested by impaired skeletal growth, GH deficiency in adulthood is now recognized as a serious disorder characterized by impairments in multiple domains including mood and quality of life. Could high rates of depression in patients with epilepsy relate to subtle GH deficiency? Because GH replacement therapy has been shown to improve mood and quality of life in patients with GH deficiency, this emerging area may hold promise for patients suffering from epilepsy-related depression.
Assuntos
Depressão/metabolismo , Transtorno Depressivo/metabolismo , Epilepsia/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Adulto , Criança , Hormônio do Crescimento Humano/deficiência , HumanosRESUMO
BACKGROUND AND PURPOSE: Evidence from animal models and examination of human epilepsy surgery specimens indicates that inflammation plays an important role in epilepsy. Positron emission tomography (PET) using [C11]PK11195, a marker of activated microglia, provides a means to visualize neuroinflammation in vivo in humans. We hypothesize that in patients with active epilepsy, [C11]PK11195 PET (PK-PET) may be able to identify areas of focally increased inflammation corresponding to the seizure onset zone. METHODS: A young woman with intractable epilepsy underwent PK-PET as part of an approved research study. PK-PET results were compared with results from other clinical studies. RESULTS: PK-PET revealed an area of focally increased radiotracer uptake in the right frontal lobe corresponding to this patient's seizure focus as identified by ictal and interictal 18F-fluorodeoxyglucose (FDG)-PET and EEG. Routine brain magnetic resonance imaging (MRI) was initially considered normal, though high-resolution studies showed possible subtle dysplasia of the right frontal lobe. The patient underwent a right frontal lobe resection, and pathological evaluation showed focal cortical dysplasia with activated microglia. CONCLUSIONS: PK-PET can identify neuroinflammation associated with subtle focal cortical dysplasia, and may therefore have a clinical role in guiding epilepsy surgery for patients with difficult-to-localize seizure foci.