Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 35(1): 203-211, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30576145

RESUMO

The design of versatile tools to improve cell targeting and drug delivery in medicine has become increasingly pertinent to nanobiotechnology. Biological and inorganic nanocarrier drug delivery systems are being explored, showing advantages and disadvantages in terms of cell targeting and specificity, cell internalization, efficient payload delivery, and safety profiles. Combining the properties of a biological coating on top of an inorganic nanocarrier, we hypothesize that this hybrid system would improve nanoparticle-cell interactions, resulting in enhanced cell targeting and uptake properties compared to the bare inorganic nanocarrier. Toward this goal, we engineered a hierarchical assembly featuring the functionalization of cargo-loaded mesoporous silica nanoparticles (MSNPs) with tobacco mosaic virus (TMV) as a biological coating. The MSNP functions as a delivery system because the porous structure enables high therapeutic payload capacity, and TMV serves as a biocompatible coating to enhance cell interactions. The resulting MSNP@TMV nanohybrids have a wool-ball-like appearance and demonstrate enhanced cell uptake, hence cargo delivery properties. The MSNP@TMV have potential for medical applications such as drug delivery, contrast agent imaging, and immunotherapy.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silício/química , Vírus do Mosaico do Tabaco/química , Carbocianinas/química , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia Confocal , Porosidade , Rodaminas/química
2.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34947516

RESUMO

A versatile, functional nanomaterial for the removal of ionic and non-ionic pollutants is presented in this work. For that purpose, the high charge mica Na-4-Mica was exchanged with the cationic surfactant (C16H33NH(CH3)2)+. The intercalation of the tertiary amine in the swellable nano-clay provides the optimal hydrophilic/hydrophobic nature in the bidimensional galleries of the nanomaterial responsible for the dual functionality. The organo-mica, made by functionalization with C16H33NH3+, was also synthesized for comparison purposes. Both samples were characterized by X-ray diffraction techniques and transmission electron microscopy. Then, the samples were exposed to a saturated atmosphere of cyclohexylamine for two days, and the adsorption capacity was evaluated by thermogravimetric measurements. Eu3+ cations served as a proof of concept for the adsorption of ionic pollutants in an aqueous solution. Optical measurements were used to identify the adsorption mechanism of Eu3+ cations, since Eu3+ emissions, including the relative intensity of different f-f transitions and the luminescence lifetime, can be used as an ideal spectroscopic probe to characterize the local environment. Finally, the stability of the amphiphilic hybrid nanomaterial after the adsorption was also tested.

3.
Oncotarget ; 10(21): 2022-2029, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31007845

RESUMO

Multiple-drug resistance in human cancer is a major problem. To circumvent this issue, clinicians combine several drugs. However, this strategy could backfire resulting in more toxic or ineffective treatments. Carbon nanotubes (CNTs), and particularly multi-walled nanotubes (MWCNTs), display intrinsic properties against cancer interfering with microtubule dynamics and triggering anti-proliferative, anti-migratory and cytotoxic effects in vitro that result in tumor growth inhibition in vivo. Remarkably, these effects are maintained in tumors resistant to traditional microtubule-binding chemotherapies such as Taxol®. In the view of these properties, we investigate the use of MWCNTs in the development of active-by-design nanocarriers, attempting to enhance the effect of broadly-used chemotherapies. We compare the cytotoxic and the anti-tumoral effect of 5-Fluorouracil (5-FU) -an antimetabolite treatment of various forms of cancer- with that of the drug physisorbed onto MWCNTs. Our results demonstrate how the total effect of the drug 5-FU is remarkably improved (50% more effective) when delivered intratumorally coupled to MWCNTs both in vitro and in vivo in solid tumoral models. Our results demonstrate how using MWCNTs as anti-cancer drug delivery platforms is a promising approach to boost the efficacy of traditional chemotherapies, while considerably reducing the chances of resistance in cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA