Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(7): 2751-2756, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577316

RESUMO

DNA-encoded small molecule libraries (DELs) have facilitated the discovery of novel modulators of many different therapeutic protein targets. We report the first successful screening of a multimillion membered DEL inside a living cell. We demonstrate a novel method using oocytes from the South African clawed frog Xenopus laevis. The large size of the oocytes of 1 µL, or 100 000 times bigger than a normal somatic cell, permits simple injection of DELs, thus resolving the fundamental problem of delivering DELs across cell membranes for in vivo screening. The target protein was expressed in the oocytes fused to a prey protein, to allow specific DNA labeling and hereby discriminate between DEL members binding to the target protein and the endogenous cell proteins. The 194 million member DEL was screened against three pharmaceutically relevant protein targets, p38α, ACSS2, and DOCK5. For all three targets multiple chemical clusters were identified. For p38α, validated hits with single digit nanomolar potencies were obtained. This work demonstrates a powerful new approach to DEL screening, which eliminates the need for highly purified active target protein and which performs the screening under physiological relevant conditions and thus is poised to increase the DEL amenable target space and reduce the attrition rates.


Assuntos
DNA/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Xenopus laevis/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Humanos , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Oócitos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Xenopus laevis/crescimento & desenvolvimento
2.
Org Biomol Chem ; 11(15): 2493-7, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23443893

RESUMO

DNA-directed synthesis of encoded combinatorial libraries of small organic compounds most often involves transfer of organic building blocks from one DNA strand to another. This requires cleavable linkers to enable cleavage of the link to the original DNA strand from which the building block is transferred. Relatively few cleavable linkers are available for DNA-directed synthesis and most often they leave an amino group at the organic molecule. Here we have extended the application of aryltriazenes as traceless linkers for DNA-directed synthesis. After reaction of one building block with a building block at another DNA strand the triazene linker is cleaved and reduced with hypophosphorous acid in high yield to leave the aryl group with a hydrogen in place of the triazene i.e. without a functional group trace. It was also demonstrated that alternatively the triazene could be converted to an azide, which was used in a cycloaddition reaction. The linker is generally stable at pH > 7 and could be stored for several months in a freezer without significant degradation.


Assuntos
DNA/química , Triazenos/química , Sequência de Bases , DNA/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA