Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931158

RESUMO

Conserving more than 7 million plant germplasm accessions in 1,750 genebanks worldwide raises the hope of securing the food supply for humanity for future generations. However, there is a genetic cost for such long-term germplasm conservation, which has been largely unaccounted for before. We investigated the extent and variation of deleterious and adaptive mutations in 490 individual plants representing barley, wheat, oat, soybean, maize, rapa, and sunflower collections in a seed genebank using RNA-Seq technology. These collections were found to have a range of deleterious mutations detected from 125 (maize) to 83,695 (oat) with a mean of 13,537 and of the averaged sample-wise mutation burden per deleterious locus from 0.069 to 0.357 with a mean of 0.200. Soybean and sunflower collections showed that accessions acquired earlier had increased mutation burdens. The germplasm with more years of storage in several collections carried more deleterious and fewer adaptive mutations. The samples with more cycles of germplasm regeneration revealed fewer deleterious and more adaptive mutations. These findings are significant for understanding mutational dynamics and genetic cost in conserved germplasm and have implications for long-term germplasm management and conservation.


Assuntos
Plantas , Sementes , Plantas/genética , Sementes/genética , Mutação
2.
J Am Chem Soc ; 144(51): 23297-23312, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512516

RESUMO

This paper describes a novel synthetic approach for the conversion of zero-valent copper metal into a conductive two-dimensional layered metal-organic framework (MOF) based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form Cu3(HHTP)2. This process enables patterning of Cu3(HHTP)2 onto a variety of flexible and porous woven (cotton, silk, nylon, nylon/cotton blend, and polyester) and non-woven (weighing paper and filter paper) substrates with microscale spatial resolution. The method produces conductive textiles with sheet resistances of 0.1-10.1 MΩ/cm2, depending on the substrate, and uniform conformal coatings of MOFs on textile swatches with strong interfacial contact capable of withstanding chemical and physical stresses, such as detergent washes and abrasion. These conductive textiles enable simultaneous detection and detoxification of nitric oxide and hydrogen sulfide, achieving part per million limits of detection in dry and humid conditions. The Cu3(HHTP)2 MOF also demonstrated filtration capabilities of H2S, with uptake capacity up to 4.6 mol/kgMOF. X-ray photoelectron spectroscopy and diffuse reflectance infrared spectroscopy show that the detection of NO and H2S with Cu3(HHTP)2 is accompanied by the transformation of these species to less toxic forms, such as nitrite and/or nitrate and copper sulfide and Sx species, respectively. These results pave the way for using conductive MOFs to construct extremely robust electronic textiles with multifunctional performance characteristics.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Nylons , Cobre/química , Têxteis , Eletrônica , Estresse Oxidativo
3.
Proc Natl Acad Sci U S A ; 116(40): 20002-20008, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527251

RESUMO

Global warming has been documented to threaten wild plants with strong selection pressures, but how plant populations respond genetically to the threats remains poorly understood. We characterized the genetic responses of 10 wild emmer wheat (Triticum dicoccoides Koern.; WEW) populations in Israel, sampling them in 1980 and again in 2008, through an exome capture analysis. It was found that these WEW populations were under elevated selection, displayed reduced diversity and temporal divergence, and carried increased mutational burdens forward. However, some populations still showed the ability to acquire beneficial alleles via selection or de novo mutation for future adaptation. Grouping populations with mean annual rainfall and temperature revealed significant differences in most of the 14 genetic estimates in either sampling year or over the 28 y. The patterns of genetic response to rainfall and temperature varied and were complex. In general, temperature groups displayed more temporal differences in genetic response than rainfall groups. The highest temperature group had more deleterious single nucleotide polymorphisms (dSNPs), higher nucleotide diversity, fewer selective sweeps, lower differentiation, and lower mutational burden. The least rainfall group had more dSNPs, higher nucleotide diversity, lower differentiation and higher mutational burden. These characterized genetic responses are significant, allowing not only for better understanding of evolutionary changes in the threatened populations, but also for realistic modeling of plant population adaptability and vulnerability to global warming.


Assuntos
Biodiversidade , Análise Mutacional de DNA , Genes de Plantas , Aquecimento Global , Mutação , Triticum/genética , Alelos , Evolução Biológica , Clima , Exoma , Genética Populacional , Genômica , Israel , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Temperatura
4.
Angew Chem Int Ed Engl ; 61(19): e202202207, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212125

RESUMO

The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.


Assuntos
Estruturas Metalorgânicas , Agentes Neurotóxicos , Catálise , Celulose , Estruturas Metalorgânicas/química , Solventes
5.
J Am Chem Soc ; 143(40): 16777-16785, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590851

RESUMO

The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Substâncias para a Guerra Química/química , Cloro/farmacologia , Estruturas Metalorgânicas/farmacologia , Roupa de Proteção , Animais , Antibacterianos/síntese química , Antivirais/síntese química , Linhagem Celular , Cloro/química , Escherichia coli/efeitos dos fármacos , Halogenação , Humanos , Estruturas Metalorgânicas/síntese química , Testes de Sensibilidade Microbiana , Gás de Mostarda/análogos & derivados , Gás de Mostarda/química , Oxirredução , SARS-CoV-2/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Têxteis , Zircônio/química
6.
Chemistry ; 27(4): 1465-1472, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32875644

RESUMO

New materials and chemical knowledge for improved personal protection are among the most pressing needs in the international community. Reported attacks using chemical warfare agents (CWAs,) including organophosphate soman (GD) and thioether mustard gas (HD) are driving research in field-deployable catalytic composites for rapid toxin degradation. In this work, we report simple template-free low temperature synthesis that enables for the first time, a deployable-structured catalytic metal-organic framework/polymer textile composite "MOF-fabric" showing rapid hydrolysis and oxidation of multiple active chemical warfare agents, GD and HD, respectively, and their simulants. Our method yields new zirconium-porphyrin based nano-crystalline PCN-222 MOF-fabrics with adjustable MOF loading and robust mechanical adhesion on low-cost nonwoven polypropylene fibers. Importantly, we describe quantitative kinetic analysis confirming that our MOF-fabrics are as effective as or better than analogous MOF powders for agent degradation, especially for oxidation. Faster oxidation using the MOF-fabrics is ascribed to the composite geometry, where active MOF catalysts are uniformly displayed on the MOF-textile enabling better reactant transport and reactive oxidant generation. Furthermore, we note the discovery of visible photo-activation of GD hydrolysis by a MOF-fabric, which is ascribed to oxidation at the active metal node site, significantly increasing the rate over that observed without illumination. These results provide important new insights into the design of future materials and chemical systems to protect military, first-responders, and civilians upon exposure to complex chemical toxins.

7.
Langmuir ; 37(23): 6923-6934, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062060

RESUMO

The promising reactive sorbent zirconium hydroxide (ZH) was challenged with common environmental contaminants (CO2, SO2, and NO2) to determine the impact on chemical warfare agent decomposition. Several environmental adsorbates rapidly formed on the ZH surface through available hydroxyl species and coordinatively unsaturated zirconium sites. ZH decontamination effectiveness was determined using a suite of instrumentation including in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor sarin (GB) decomposition in real time and at ambient pressure. Surface products were characterized by ex situ X-ray photoelectron spectroscopy (XPS). The adsorption enthalpies, entropies, and bond lengths for environmental contaminants and GB decomposition products were estimated using density functional theory (DFT). Consistent with the XPS and DRIFTS results, DFT simulations predicted the relative stabilities of molecular adsorbates and reaction products in the following order: CO2 < NO2 < GB ≈ SO2. Microbreakthrough capacity measurements on ZH showed a 7-fold increase in the sorption of NO2 vs SO2, which indicates differences in the surface reactivity of these species. GB decomposition was rapid on clean and CO2-dosed ZH and showed reduced decomposition on SO2- and NO2-predosed samples. Despite these findings, the total GB sorption capacity of clean and predosed ZH was consistent across all samples. These data provide insight into the real-world use of ZH as a reactive sorbent for chemical decontamination applications.


Assuntos
Nanopartículas , Zircônio , Adsorção , Hidróxidos , Sarina/toxicidade
8.
J Am Chem Soc ; 142(51): 21428-21438, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290083

RESUMO

While linkers with various conformations pose challenges in the design and prediction of metal-organic framework (MOF) structures, they ultimately provide great opportunities for the discovery of novel structures thereby enriching structural diversity. Tetratopic carboxylate linkers, for example, have been widely used in the formation of Zr-based MOFs due to the ability to target diverse topologies, providing a promising platform to explore their mechanisms of formation. However, it remains a challenge to control the resulting structures when considering the complex assembly of linkers with unpredicted conformations and diverse Zr6 node connectivities. Herein, we systematically explore how solvents and modulators employed during synthesis influence the resulting topologies of Zr-MOFs, choosing H4TCPB-Br2 (1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene) as a representative tetratopic carboxylate linker. By modulating the reaction conditions, the conformations of the linker and the connectivities of the Zr6 node can be simultaneously tuned, resulting in four types of structures: a new topology (NU-500), she (NU-600), scu (NU-906), and csq (NU-1008). Importantly, we have synthesized the first 5-connected Zr6 node to date with the (4,4,4,5)-connected framework, NU-500. We subsequently performed detailed structural analyses to uncover the relationship between the structures and topologies of these MOFs and demonstrated the crucial role that the flexible linker played to access varied structures by different degrees of linker deformation. Due to a variety of pore structures ranging from micropores to hierarchical micropores and mesopores, the resulting MOFs show drastically different behaviors for the adsorption of n-hexane and dynamic adsorption of 2-chloroethyl ethyl sulfide (CEES) under dry and humid conditions.


Assuntos
Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Estruturas Metalorgânicas/química , Zircônio/química , Adsorção , Benzeno/química , Cinética , Gás de Mostarda/análogos & derivados , Gás de Mostarda/química , Gás de Mostarda/isolamento & purificação , Porosidade
9.
J Am Chem Soc ; 141(51): 20016-20021, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31833359

RESUMO

Metal-organic frameworks (MOFs) are promising candidates for the catalytic hydrolysis of nerve agents and their simulants. Though highly efficient, bulk water and volatile bases are often required for hydrolysis with these MOF catalysts, preventing real-world implementation. Herein we report a generalizable and scalable approach for integrating MOFs and non-volatile polymeric bases onto textile fibers for nerve agent hydrolysis. Notably, the composite material showed similar reactivity under ambient conditions compared to the powder material in aqueous alkaline solution. This represents a critical step toward a unified strategy for nerve agent hydrolysis in practical settings, which can significantly reduce the dimensions of filters and increase the efficiency of protective suits.

10.
J Am Chem Soc ; 141(31): 12229-12235, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31343872

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) based on edge-transitive nets such as fcu, spn, she, csq, and ftw with diverse potential applications have been widely reported. Zr-MOFs based on the highly connected 6,12-connected alb net, however, remain absent on account of synthetic challenges. Herein we report the ligand-directed reticular syntheses and isoreticular expansion of a series of Zr-MOFs with the edge-transitive alb net from 12-connected hexagonal-prismatic Zr6 nodes and 6-connected trigonal-prismatic linkers, i.e., microporous NU-1600, mesoporous NU-1601, and mesoporous NU-1602. These Zr-MOFs exhibit remarkable activities toward the destruction of a nerve agent (soman) and a nerve agent simulant (DMNP).

11.
J Am Chem Soc ; 141(39): 15626-15633, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532665

RESUMO

Organophosphonate-based nerve agents, such as VX, Sarin (GB), and Soman (GD), are among the most toxic chemicals to humankind. Recently, we have shown that Zr-based metal-organic frameworks (Zr-MOFs) can effectively catalyze the hydrolysis of these toxic chemicals for diminishing their toxicity. On the other hand, utilizing these materials in powder form is not practical, and developing scalable and economical processes for integrating these materials onto fibers is crucial for protective gear. Herein, we report a scalable, template-free, and aqueous solution-based synthesis strategy for the production of Zr-MOF-coated textiles. Among all MOF/fiber composites reported to date, the MOF-808/polyester fibers exhibit the highest rates of nerve agent hydrolysis. Moreover, such highly porous fiber composites display significantly higher protection time compared to that of its parent fabric for a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). A decreased diffusion rate of toxic chemicals through the MOF layer can provide time needed for the destruction of the harmful species.

12.
Small ; 15(10): e1805133, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30707495

RESUMO

Abatement of chemical hazards using adsorptive metal-organic frameworks (MOFs) attracts substantial attention, but material stability and crystal integration into functional systems remain key challenges. Herein, water-stable, polymer fiber surface-oriented M-TCPP [M = Cu, Zn, and Co; H2 TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] 2D MOF crystals are fabricated using a facile hydroxy double salt (HDS) solid-source conversion strategy. For the first time, Cu-TCPP is formed from a solid source and confirmed to be highly adsorptive for NH3 and 2-chloroethyl ethyl sulfide (CEES), a blistering agent simulant, in humid (80% relative humidity (RH)) conditions. Moreover, the solid HDS source is found as a unique new approach to control MOF thin-film crystal orientation, thereby facilitating radially arranged MOF crystals on fibers. On a per unit mass of MOF basis in humid conditions, the MOF/fiber composite enhances NH3 adsorptive capacity by a factor of 3 compared to conventionally prepared MOF powders. The synthesis route extends to other MOF/fiber composite systems, therefore providing a new route for chemically protective materials.

13.
Chemistry ; 23(63): 15913-15916, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28949042

RESUMO

For the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH2 in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer.

14.
J Am Chem Soc ; 138(36): 11449-52, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27556899

RESUMO

Carbon dioxide adsorption in metal-organic frameworks has been widely studied for applications in carbon capture and sequestration. A critical component that has been largely overlooked is the measurement of diffusion rates. This paper describes a new reproducible procedure to synthesize millimeter-scale Cu-BTC single crystals using concentrated reactants and an acetic acid modulator. Microscopic images, X-ray diffraction patterns, Brunauer-Emmett-Teller surface areas, and thermogravimetric analysis results all confirm the high quality of these Cu-BTC single crystals. The large crystal size aids in the accurate measurement of micropore diffusion coefficients. Concentration-swing frequency response performed at varying gas-phase concentrations gives diffusion coefficients that show very little dependence on the loading up to pressures of 0.1 bar. The measured micropore diffusion coefficient for CO2 in Cu-BTC is 1.7 × 10(-9) m(2)/s.

15.
Nat Mater ; 14(5): 512-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774952

RESUMO

Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

16.
Chemistry ; 22(42): 14864-14868, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27607019

RESUMO

Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective.

17.
Angew Chem Int Ed Engl ; 55(21): 6235-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27072136

RESUMO

Here we discuss the removal of nitrogen dioxide, an important toxic industrial chemical and pollutant, from air using the MOF UiO-66-NH2 . The amine group is found to substantially aid in the removal, resulting in unprecedented removal capacities upwards of 1.4 g of NO2 /g of MOF. Furthermore, whereas NO2 typically generates substantial quantities of NO on sorbents, the amount generated by UiO-66-NH2 is significantly reduced. Of particular significance is the formation of a diazonium ion on the aromatic ring of the MOF, and the potential reduction of NO2 to molecular nitrogen.

18.
Angew Chem Int Ed Engl ; 55(42): 13224-13228, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27653957

RESUMO

The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs.

19.
J Am Chem Soc ; 137(43): 13756-9, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26456471

RESUMO

Rapid room-temperature synthesis of metal-organic frameworks (MOFs) is highly desired for industrial implementation and commercialization. Here we find that a (Zn,Cu) hydroxy double salt (HDS) intermediate formed in situ from ZnO particles or thin films enables rapid growth (<1 min) of HKUST-1 (Cu3(BTC)2) at room temperature. The space-time-yield reaches >3 × 10(4) kg·m(-3)·d(-1), at least 1 order of magnitude greater than any prior report. The high anion exchange rate of (Zn,Cu) hydroxy nitrate HDS drives the ultrafast MOF formation. Similarly, we obtained Cu-BDC, ZIF-8, and IRMOF-3 structures from HDSs, demonstrating synthetic generality. Using ZnO thin films deposited via atomic layer deposition, MOF patterns are obtained on pre-patterned surfaces, and dense HKUST-1 coatings are grown onto various form factors, including polymer spheres, silicon wafers, and fibers. Breakthrough tests show that the MOF-functionalized fibers have high adsorption capacity for toxic gases. This rapid synthesis route is also promising for new MOF-based composite materials and applications.

20.
Chemistry ; 21(50): 18029-32, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26443007

RESUMO

The typically stable Zr-based metal-organic frameworks (MOFs) UiO-66 and UiO-66-NH2 were treated with tetrafluoromethane (CF4 ) and hexafluoroethane (C2 F6 ) plasmas. Through interactions between fluoride radicals from the perfluoroalkane plasma and the zirconium-oxygen bonds of the MOF, the resulting materials showed the development of mesoporosity, creating a hierarchical pore structure. It is anticipated that this strategy can be used as a post-synthetic technique for developing hierarchical networks in a variety of MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA