Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 288(24): 17844-58, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23645685

RESUMO

The interaction at neutral pH between wild-type and a variant form (R3A) of the amyloid fibril-forming protein ß2-microglobulin (ß2m) and the molecular chaperone αB-crystallin was investigated by thioflavin T fluorescence, NMR spectroscopy, and mass spectrometry. Fibril formation of R3Aß2m was potently prevented by αB-crystallin. αB-crystallin also prevented the unfolding and nonfibrillar aggregation of R3Aß2m. From analysis of the NMR spectra collected at various R3Aß2m to αB-crystallin molar subunit ratios, it is concluded that the structured ß-sheet core and the apical loops of R3Aß2m interact in a nonspecific manner with the αB-crystallin. Complementary information was derived from NMR diffusion coefficient measurements of wild-type ß2m at a 100-fold concentration excess with respect to αB-crystallin. Mass spectrometry acquired in the native state showed that the onset of wild-type ß2m oligomerization was effectively reduced by αB-crystallin. Furthermore, and most importantly, αB-crystallin reversibly dissociated ß2m oligomers formed spontaneously in aged samples. These results, coupled with our previous studies, highlight the potent effectiveness of αB-crystallin in preventing ß2m aggregation at the various stages of its aggregation pathway. Our findings are highly relevant to the emerging view that molecular chaperone action is intimately involved in the prevention of in vivo amyloid fibril formation.


Assuntos
Cadeia B de alfa-Cristalina/química , Microglobulina beta-2/química , Amiloide/química , Benzotiazóis , Corantes Fluorescentes/química , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Espectrometria de Massas por Ionização por Electrospray , Tiazóis/química
2.
Biochim Biophys Acta ; 1753(1): 76-84, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16081329

RESUMO

The solution structure of human beta(2)-microglobulin (beta(2)-m) was determined by (1)H NMR spectroscopy and restrained modeling calculations. Compared to the crystal structure of type I major histocompatibility complex (MHC-I), where the protein is associated to the heavy-chain component, several differences are observed, i.e., increased separation between strands A and B, displacements of strand C' and loop DE, shortening of strands D and E. These modifications can be considered as the prodromes of the amyloid transition. Even minor charge changes in response to pH, as is the case with H31 imidazole protonation, trigger the transition that starts with unpairing of strand A. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu(2+) binding which is shown to occur primarily at H31. Solvation of the protected regions in MHC-I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches via surface charge cluster. Mutants or truncated forms of beta(2)-m can be designed to remove the instability from H31 titration or to enhance the instability through surface charge suppression. By monitoring the conformational evolution of wild-type protein and variants thereof, either in response or absence of external perturbation, valuable insights into intermediate structure and fibrillogenesis mechanisms are gained.


Assuntos
Amiloide/química , Conformação Proteica , Microglobulina beta-2/química , Cristalografia por Raios X , Estabilidade de Medicamentos , Evolução Molecular , Humanos , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Soluções , Termodinâmica , Microglobulina beta-2/genética
3.
FEBS J ; 273(11): 2461-74, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16704420

RESUMO

Cleavage of the small amyloidogenic protein beta2-microglobulin after lysine-58 renders it more prone to unfolding and aggregation. This is important for dialysis-related beta2-microglobulin amyloidosis, since elevated levels of cleaved beta2-microglobulin may be found in the circulation of dialysis patients. However, the solution structures of these cleaved beta2-microglobulin variants have not yet been assessed using single-residue techniques. We here use such methods to examine beta2-microglobulin cleaved after lysine-58 and the further processed variant (found in vivo) from which lysine-58 is removed. We find that the solution stability of both variants, especially of beta2-microglobulin from which lysine-58 is removed, is much reduced compared to wild-type beta2-microglobulin and is strongly dependent on temperature and protein concentration. 1H-NMR spectroscopy and amide hydrogen (1H/2H) exchange monitored by MS show that the overall three-dimensional structure of the variants is similar to that of wild-type beta2-microglobulin at subphysiological temperatures. However, deviations do occur, especially in the arrangement of the B, D and E beta-strands close to the D-E loop cleavage site at lysine-58, and the experiments suggest conformational heterogeneity of the two variants. Two-dimensional NMR spectroscopy indicates that this heterogeneity involves an equilibrium between the native-like fold and at least one conformational intermediate resembling intermediates found in other structurally altered beta2-microglobulin molecules. This is the first single-residue resolution study of a specific beta2-microglobulin variant that has been found circulating in dialysis patients. The instability and conformational heterogeneity of this variant suggest its involvement in beta2-microglobulin amyloidogenicity in vivo.


Assuntos
Lisina , Microglobulina beta-2/química , Eletroforese Capilar , Humanos , Cálculos Renais/terapia , Cálculos Renais/urina , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Terapia de Substituição Renal , Termodinâmica , Microglobulina beta-2/isolamento & purificação , Microglobulina beta-2/urina
4.
Protein Sci ; 11(3): 487-99, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11847272

RESUMO

The solution structure of human beta2-microglobulin (beta2-m), the nonpolymorphic component of class I major histocompatibility complex (MHC-I), was determined by (1)H NMR spectroscopy and restrained modeling calculations. Compared to previous structural data obtained from the NMR secondary structure of the isolated protein and the crystal structure of MHC-I, in which the protein is associated to the heavy-chain component, several differences are observed. The most important rearrangements were observed for (1) strands V and VI (loss of the C-terminal and N-terminal end, respectively), (2) interstrand loop V-VI, and (3) strand I, including the N-terminal segment (displacement outward of the molecular core). These modifications can be considered as the prodromes of the amyloid transition. Solvation of the protected regions in MHC-I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches at the interface with heavy chain and the nearby region at the surface charge cluster of the C-terminal segment. As a result, the molecule is placed in a state in which even minor charge and solvation changes in response to pH or ionic-strength variations can easily compromise the hydrophobic/hydrophilic balance and trigger the transition into a partially unfolded intermediate that starts with unpairing of strand I and leads to polymerization and precipitation into fibrils or amorphous aggregates. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu(2+) binding, which is shown to occur primarily at His 31 and involve partially also His 13, the next available His residue along the partial unfolding pathway.


Assuntos
Amiloide/química , Microglobulina beta-2/química , Sequência de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Soluções
5.
J Biol Chem ; 279(10): 9176-89, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14660575

RESUMO

Three variants of human beta(2)-microglobulin (beta(2)-m) were compared with wild-type protein. For two variants, namely the mutant R3Abeta(2)-m and the form devoid of the N-terminal tripeptide (DeltaN3beta(2)-m), a reduced unfolding free energy was measured compared with wild-type beta(2)-m, whereas an increased stability was observed for the mutant H31Ybeta(2)-m. The solution structure could be determined by (1)H NMR spectroscopy and restrained modeling only for R3Abeta(2)-m that showed the same conformation as the parent species, except for deviations at the interstrand loops. Analogous conclusions were reached for H31Ybeta(2)-m and DeltaN3beta(2)-m. Precipitation and unfolding were observed over time periods shorter than 4-6 weeks with all the variants and, sometimes, with wild-type protein. The rate of structured protein loss from solution as a result of precipitation and unfolding always showed pseudo-zeroth order kinetics. This and the failure to observe an unfolded species without precipitation suggest that a nucleated conformational conversion scheme should apply for beta(2)-m fibrillogenesis. The mechanism is consistent with the previous and present results on beta(2)-m amyloid transition, provided a nucleated oligomeric species be considered the stable intermediate of fibrillogenesis, the monomeric intermediate being the necessary transition step along the pathway from the native protein to the nucleated oligomer.


Assuntos
Microglobulina beta-2/química , Amiloide/metabolismo , Amiloidose/metabolismo , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Desnaturação Proteica , Relação Estrutura-Atividade , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA