Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 61: 12-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521519

RESUMO

Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.


Assuntos
Medula Óssea/patologia , Osso e Ossos/patologia , Homeostase , Macrófagos/patologia , Nicho de Células-Tronco , Cicatrização , Animais , Humanos
2.
Immunol Cell Biol ; 95(1): 7-16, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27553584

RESUMO

Better understanding of bone growth and regeneration mechanisms within periosteal tissues will improve understanding of bone physiology and pathology. Macrophage contributions to bone biology and repair have been established but specific investigation of periosteal macrophages has not been undertaken. We used an immunohistochemistry approach to characterize macrophages in growing murine bone and within activated periosteum induced in a mouse model of bone injury. Osteal tissue macrophages (osteomacs) and resident macrophages were distributed throughout resting periosteum. In tissues collected from 4-week-old mice, osteomacs were observed intimately associated with sites of periosteal diaphyseal and metaphyseal bone dynamics associated with normal growth. This included F4/80+Mac-2-/low osteomac association with extended tracks of bone formation (modeling) on diphyseal periosteal surfaces. Although this recapitulated endosteal osteomac characteristics, there was subtle variance in the morphology and spatial organization of periosteal modeling-associated osteomacs, which likely reflects the greater structural complexity of periosteum. Osteomacs, resident macrophages and inflammatory macrophages (F4/80+Mac-2hi) were associated with the complex bone dynamics occurring within the periosteum at the metaphyseal corticalization zone. These three macrophage subsets were also present within activated native periosteum after bone injury across a 9-day time course that spanned the inflammatory through remodeling bone healing phases. This included osteomac association with foci of endochondral ossification within the activated native periosteum. These observations confirm that osteomacs are key components of both osteal tissues, in spite of salient differences between endosteal and periosteal structure and that multiple macrophage subsets are involved in periosteal bone dynamics.


Assuntos
Desenvolvimento Ósseo , Regeneração Óssea , Macrófagos/patologia , Periósteo/patologia , Animais , Inflamação/patologia , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Osteogênese , Cicatrização
3.
Curr Osteoporos Rep ; 15(4): 385-395, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28647885

RESUMO

PURPOSE OF REVIEW: Mounting evidence supporting the critical contribution of macrophages, in particular osteal macrophages, to bone regeneration is reviewed. We specifically examine the potential role of macrophages in the basic multicellular units coordinating lifelong bone regeneration via remodelling and bone regeneration in response to injury. We review and discuss the distinctions between macrophage and osteoclast contributions to bone homeostasis, particularly the dichotomous role of the colony-stimulating factor 1-colony-stimulating factor 1 receptor axis. RECENT FINDINGS: The impact of inflammation associated with aging and other hallmarks of aging, including senescence, on macrophage function is addressed in the context of osteoporosis and delayed fracture repair. Resident macrophages versus recruited macrophage contributions to fracture healing are also discussed. We identify some of the remaining knowledge gaps that will need to be closed in order to maximise benefits from therapeutically modulating or mimicking the function of macrophages to improve bone health and regeneration over a lifetime.


Assuntos
Envelhecimento/imunologia , Regeneração Óssea/imunologia , Consolidação da Fratura/imunologia , Macrófagos/imunologia , Osteoclastos/fisiologia , Osteoporose/imunologia , Envelhecimento/metabolismo , Senescência Celular , Homeostase , Humanos , Inflamação , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
4.
Bone Res ; 12(1): 43, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103355

RESUMO

Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN+) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN+ osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix+ cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN+ osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor+ and osterix+ osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting.


Assuntos
Apoptose , Macrófagos , Osteoblastos , Osteogênese , Animais , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia , Osteogênese/efeitos dos fármacos , Macrófagos/metabolismo , Feminino , Masculino , Camundongos , Fagocitose/fisiologia , Camundongos Endogâmicos C57BL , Eferocitose
5.
Biomaterials ; 196: 51-66, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29107337

RESUMO

Osteal macrophages (osteomacs) contribute to bone homeostasis and regeneration. To further distinguish their functions from osteoclasts, which share many markers and growth factor requirements, we developed a rapid, enzyme-free osteomac enrichment protocol that permitted characterization of minimally manipulated osteomacs by flow cytometry. Osteomacs differ from osteoclasts in expression of Siglec1 (CD169). This distinction was confirmed using the CD169-diphtheria toxin (DT) receptor (DTR) knock-in model. DT treatment of naïve CD169-DTR mice resulted in selective and striking loss of osteomacs, whilst osteoclasts and trabecular bone area were unaffected. Consistent with a previously-reported trophic interaction, osteomac loss was accompanied by a concomitant and proportionately striking reduction in osteoblasts. The impact of CD169+ macrophage depletion was assessed in two models of bone injury that heal via either intramembranous (tibial injury) or endochondral (internally-plated femoral fracture model) ossification. In both models, CD169+ macrophage, including osteomac depletion compromised bone repair. Importantly, DT treatment in CD169-DTR mice did not affect osteoclast frequency in either model. In the femoral fracture model, the magnitude of callus formation correlated with the number of F4/80+ macrophages that persisted within the callus. Overall these observations provide compelling support that CD169+ osteomacs, independent of osteoclasts, provide vital pro-anabolic support to osteoblasts during both bone homeostasis and repair.


Assuntos
Osso e Ossos/patologia , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Cicatrização , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Inflamação/patologia , Cinética , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Periósteo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA