Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5032, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596280

RESUMO

T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.


Assuntos
Agamaglobulinemia , COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T , Peptídeos/uso terapêutico
2.
Cancers (Basel) ; 14(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406613

RESUMO

(1) Background: Mutation-specific T cell receptor (TCR)-based adoptive T cell therapy represents a truly tumor-specific immunotherapeutic strategy. However, isolating neoepitope-specific TCRs remains a challenge. (2) Methods: We investigated, side by side, different TCR repertoires-patients' peripheral lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs), PBLs of healthy donors, and a humanized mouse model-to isolate neoepitope-specific TCRs against eight neoepitope candidates from a colon cancer and an ovarian cancer patient. Neoepitope candidates were used to stimulate T cells from different repertoires in vitro to generate neoepitope-specific T cells and isolate the specific TCRs. (3) Results: We isolated six TCRs from healthy donors, directed against four neoepitope candidates and one TCR from the murine T cell repertoire. Endogenous processing of one neoepitope, for which we isolated one TCR from both human and mouse-derived repertoires, could be shown. No neoepitope-specific TCR could be generated from the patients' own repertoire. (4) Conclusion: Our data indicate that successful isolation of neoepitope-specific TCRs depends on various factors such as the heathy donor's TCR repertoire or the presence of a tumor microenvironment allowing neoepitope-specific immune responses of the host. We show the advantage and feasibility of using healthy donor repertoires and humanized mouse TCR repertoires to generate mutation-specific TCRs with different specificities, especially in a setting when the availability of patient material is limited.

3.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330762

RESUMO

BACKGROUND: Adoptive transfer of engineered T cells has shown remarkable success in B-cell malignancies. However, the most common strategy of targeting lineage-specific antigens can lead to undesirable side effects. Also, a substantial fraction of patients have refractory disease. Novel treatment approaches with more precise targeting may be an appealing alternative. Oncogenic somatic mutations represent ideal targets because of tumor specificity. Mutation-derived neoantigens can be recognized by T-cell receptors (TCRs) in the context of MHC-peptide presentation. METHODS: Here we have generated T-cell lines from healthy donors by autologous in vitro priming, targeting a missense mutation on the adaptor protein MyD88, changing leucine at position 265 to proline (MyD88 L265P), which is one of the most common driver mutations found in B-cell lymphomas. RESULTS: Generated T-cell lines were selectively reactive against the mutant HLA-B*07:02-restricted epitope but not against the corresponding wild-type peptide. Cloned TCRs from these cell lines led to mutation-specific and HLA-restricted reactivity with varying functional avidity. T cells engineered with a mutation-specific TCR (TCR-T cells) recognized and killed B-cell lymphoma cell lines characterized by intrinsic MyD88 L265P mutation. Furthermore, TCR-T cells showed promising therapeutic efficacy in xenograft mouse models. In addition, initial safety screening did not indicate any sign of off-target reactivity. CONCLUSION: Taken together, our data suggest that mutation-specific TCRs can be used to target the MyD88 L265P mutation, and hold promise for precision therapy in a significant subgroup of B-cell malignancies, possibly achieving the goal of absolute tumor specificity, a long sought-after dream of immunotherapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Linfoma de Células B/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Humanos , Linfoma de Células B/imunologia , Mutação
4.
EJNMMI Res ; 11(1): 77, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34417915

RESUMO

BACKGROUND: The chemokine receptor CXCR4 is frequently overexpressed and associated with adverse prognosis in most hematopoietic malignancies and solid cancers. Recently, CXCR4 molecular imaging using the CXCR4-specific positron emission tomography (PET) tracer Pentixafor ([68Ga]Pentixafor) has become a well-established method to non-invasively measure CXCR4 expression in vivo. In previous Pentixafor imaging studies, highly variable CXCR4 tracer uptake to the spleen was observed. RESULTS: We investigated the hypothesis that enhanced spleen [68Ga]Pentixafor uptake and thus CXCR4 expression in patients with solid tumors would indicate an activated spleen state and/or an association with clinical and prognostic features and survival parameters. In this retrospective study, [68Ga]Pentixafor-PET images and patient records of 145 solid tumor patients representing 27 cancer entities were investigated for an association of spleen [68Ga]Pentixafor uptake and clinical characteristics and outcome. Based on this assessment, we did not observe differences in clinical outcomes, measured by progression-free survival, overall survival and remission status neither within the entire cohort nor within subgroups of adrenal cancer, desmoplastic small round cell tumor, neuroendocrine tumors, non-small cell lung cancer, small cell lung cancer and pancreatic adenocarcinoma patients. No tumor entity showed especially high levels of spleen [68Ga]Pentixafor uptake compared to others or a control cohort. However, when investigating laboratory parameters, there was a positive correlation of high spleen [68Ga]Pentixafor uptake with leukocyte and/or platelet counts in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer. CONCLUSION: Spleen [68Ga]Pentixafor uptake was not associated with stage of disease and clinical outcomes in solid tumor patients. We identified positively associated platelet and/or leukocyte counts with spleen [68Ga]Pentixafor uptake in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer, suggesting that splenic CXCR4 expression could possibly play a role in systemic immunity/inflammation in some types of solid tumors or a subgroup of patients within solid tumor entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA