Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
NMR Biomed ; 37(1): e5028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37669779

RESUMO

We propose a deep learning (DL) model and a hyperparameter optimization strategy to reconstruct T1 and T2 maps acquired with the magnetic resonance fingerprinting (MRF) methodology. We applied two different MRF sequence routines to acquire images of ex vivo rat brain phantoms using a 7-T preclinical scanner. Subsequently, the DL model was trained using experimental data, completely excluding the use of any theoretical MRI signal simulator. The best combination of the DL parameters was implemented by an automatic hyperparameter optimization strategy, whose key aspect is to include all the parameters to the fit, allowing the simultaneous optimization of the neural network architecture, the structure of the DL model, and the supervised learning algorithm. By comparing the reconstruction performances of the DL technique with those achieved from the traditional dictionary-based method on an independent dataset, the DL approach was shown to reduce the mean percentage relative error by a factor of 3 for T1 and by a factor of 2 for T2 , and to improve the computational time by at least a factor of 37. Furthermore, the proposed DL method enables maintaining comparable reconstruction performance, even with a lower number of MRF images and a reduced k-space sampling percentage, with respect to the dictionary-based method. Our results suggest that the proposed DL methodology may offer an improvement in reconstruction accuracy, as well as speeding up MRF for preclinical, and in prospective clinical, investigations.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética
2.
Int J Mol Sci ; 21(21)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113845

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Heterogeneidade Genética , Inflamação/genética , Microglia/metabolismo , Transcriptoma/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Inflamação/metabolismo
3.
Ann Neurol ; 83(2): 418-432, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29369397

RESUMO

OBJECTIVE: Lysosomal storage disorders (LSDs) are a broad class of inherited metabolic diseases caused by the defective activity of lysosomal enzymes. Central nervous system (CNS) manifestations are present in roughly 50% of LSD patients and represent an unmet medical need for them. We explored the therapeutic potential of metallothioneins (MTs), a newly identified family of proteins with reported neuroprotective roles, in the murine models of two LSDs with CNS involvement. METHODS: MT-1 overexpressing transgenic mice (MTtg) were crossed with the murine models of Batten and Krabbe diseases. Changes in the survival and manifestations of the disease in the MTtg setting were assessed. In addition, we analyzed the therapeutic effects of MT-1 CNS gene delivery in one of these LSD models. RESULTS: Constitutive expression of MT-1 exerted favorable phenotypic effects in both LSD models. MT-LSD mice showed a 5% to 10% increase in survival and slower disease progression as compared to not-transgenic LSD mice. Rescue of Purkinje cells from degeneration and apoptosis was also observed in the MT-LSD models. This phenotypic amelioration was accompanied by a modulation of the disease-associated activated inflammatory microglia phenotype, and by a reduction of oxidative stress. Importantly, for the clinical translation of our findings, the very same effects were obtained when MTs were delivered to brains by systemic AAV gene transfer. INTERPRETATION: MTs can be considered novel therapeutic agents (and targets) in LSDs and potentiate the effects of approaches aiming at correction of the disease-causing enzyme deficiency in the CNS. Ann Neurol 2018;83:418-432 Ann Neurol 2018;83:418-432.


Assuntos
Doenças por Armazenamento dos Lisossomos/patologia , Metalotioneína , Fármacos Neuroprotetores , Animais , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Nanotechnology ; 29(30): 305602, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29701613

RESUMO

An optimal drug delivery system should be characterized by biocompatibility, biodegradability, high drug loading and favorable drug release profile. To achieve this goal a hydrazone linked doxorubicin-poly(lactic acid) prodrug (PLA-DOX) was synthesized by the functionalization of a short polymer chain produced by ring opening polymerization. The hydrophobic prodrug generated in this way was nanoprecipitated using a block copolymer to form polymeric nanoparticles (NPs) with a quantitative loading efficiency and a high and tunable drug loading. The effects of the concentration of the PLA-DOX prodrug and surfactant were studied by dynamic light scattering showing a range of NP size between 50 and 90 nm and monodispersed size distributions with polydispersity indexes lower then 0.27 up to a maximum DOX concentration of 27% w/w. The release profile of DOX from these NPs, tested at different pH conditions, showed a higher release rate in acidic conditions, consistent with the nature of the hydrazone bond which was used to conjugate the drug to the polymer. In vitro cytotoxicity studies performed on BV2 microglia-like cell line highlighted a specific cytotoxic effect of these NPs suggesting the maintenance of the drug efficacy and a modified release profile upon encapsulation of DOX in the NPs.


Assuntos
Doxorrubicina/farmacologia , Hidrazonas/química , Nanopartículas/química , Poliésteres/química , Pró-Fármacos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Espectroscopia de Prótons por Ressonância Magnética
5.
Biomed Chromatogr ; 30(4): 645-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26447185

RESUMO

Over the years there has been a growing interest in the therapeutic potential for central nervous system pathologies of sigma receptor modulators. The widely studied PRE-084 and our compounds RC-33 and RC-34 are very potent and selective sigma 1 receptor agonists that could represent promising drug candidates for Amyotrophic Lateral Sclerosis (ALS). Herein, we develop and validate robust and easy-to-use reverse-phase chromatographic methods suitable for detecting and quantifying PRE-084, RC-33 and RC-34 in mouse blood, brain and spinal cord. An HPLC/UV/ESI-MS system was employed for analyzing PRE-084 and an HPLC/UV-PDA system for determining RC-33 and RC-34. Chromatographic separations were achieved on Waters Symmetry RP18 column (150 × 3.9 mm, 5 µm), eluting with water and acetonitrile (both containing 0.1% formic acid) in gradient conditions. The recovery of PRE-084, RC-33 and RC-34 was >95% in all the considered matrices. Their limits of quantitation and detection were also determined. Validation proved the methods be suitable for separating tested compounds from endogenous interferences, being characterized by good sensitivity, linearity, precision and accuracy. A preliminary central nervous system distribution study showed a high distribution of RC-33 in brain and spinal cord, with concentration values well above the determined limit of quantitation. The proposed methods will be used in future preclinical investigations.


Assuntos
Compostos de Bifenilo/sangue , Compostos de Bifenilo/farmacocinética , Cromatografia de Fase Reversa/métodos , Morfolinas/farmacocinética , Piperidinas/sangue , Piperidinas/farmacocinética , Receptores sigma/agonistas , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Camundongos , Morfolinas/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Medula Espinal/metabolismo , Receptor Sigma-1
6.
Neurobiol Dis ; 62: 218-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141020

RESUMO

The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1ß were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.


Assuntos
Morfolinas/uso terapêutico , Doença dos Neurônios Motores/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Receptores sigma/metabolismo , Fatores Etários , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Neuroglia/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Receptor Sigma-1
7.
Bioorg Med Chem ; 21(9): 2577-86, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498917

RESUMO

Strong pharmacological evidences indicate that σ1 receptors are implicated in the pathophysiology of all major CNS disorders. In the last years our research group has conducted extensive studies aimed at discovering novel σ1 ligands and we recently selected (R/S)-RC-33 as a novel potent and selective σ1 receptor agonist. As continuation of our work in this field, here we report our efforts in the development of this new σ1 receptor agonist. Initially, we investigated the binding of (R) and (S) enantiomers of RC-33 to the σ1 receptor by in silico experiments. The close values of the predicted affinity of (R)-RC-33 and (S)-RC-33 for the protein evidenced the non-stereoselective binding of RC-33 to the σ1 receptor; this, in turn, supported further development and characterization of RC-33 in its racemic form. Subsequently, we set-up a scaled-up, optimized synthesis of (R/S)-RC-33 along with some compound characterization data (e.g., solubility in different media and solid state characterization by thermal analysis techniques). Finally, metabolic studies of RC-33 in different biological matrices (e.g., plasma, blood, and hepatic S9 fraction) of different species (e.g., rat, mouse, dog, and human) were performed. (R/S)-RC-33 is generally stable in all examined biological matrices, with the only exception of rat and human liver S9 fractions in the presence of NADPH. In such conditions, the compound is subjected to a relevant oxidative metabolism, with a degradation of approximately 65% in rat and 69% in human. Taken together, our results demonstrated that (R/S)-RC-33 is a highly potent, selective, metabolically stable σ1 agonist, a promising novel neuroprotective drug candidate.


Assuntos
Compostos de Bifenilo/farmacologia , Fator de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Piperidinas/farmacologia , Receptores sigma/agonistas , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Físico-Química , Cães , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Células PC12 , Piperidinas/química , Piperidinas/metabolismo , Ratos , Receptores sigma/metabolismo , Receptor Sigma-1
8.
Chirality ; 25(11): 814-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038285

RESUMO

In this study we addressed the role of chirality in the biological activity of RC-33, recently studied by us in its racemic form. An asymmetric synthesis procedure was the first experiment, leading to the desired enantioenriched RC-33 but with an enantiomeric excess (ee) not good enough for supporting the in vitro investigation. An enantioselective high-performance liquid chromatography (HPLC) procedure was then successfully carried out, yielding both RC-33 enantiomers in amounts and optical purity suitable for the pharmacological study. The absolute configuration of pure enantiomers was easily assigned exploiting the asymmetric synthesis previously devised. As emerged in the preliminary in vitro biological investigation, (S)- and (R)-RC-33 possess a comparable affinity towards the σ1 receptor and a very a similar behavior in the calcium influx assay, resulting in an equally effective σ1 receptor agonist. Overall, the results obtained so far suggest that the interaction with the biological target is nonstereoselective and leads us to hypothesize that there is a lack of stereoselectivity in the biological activity of RC-33.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/isolamento & purificação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cobaias , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Piperidinas/síntese química , Piperidinas/isolamento & purificação , Ratos , Receptores sigma/agonistas , Estereoisomerismo
9.
EMBO Mol Med ; 15(4): e15968, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36876653

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Camundongos , Modelos Animais de Doenças , Terapia Genética , Células-Tronco Hematopoéticas
10.
Eur J Med Chem ; 249: 115163, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716640

RESUMO

Sigma-1 receptor (S1R) has been considered a promising therapeutic target for several neurodegenerative diseases and S1R agonists have shown neuroprotective activity against glutamate excitotoxicity and oxidative stress. Starting from a previously identified low nanomolar S1R agonist, in this work we prepared and tested novel benzylpiperidine/benzylpiperazine-based compounds designed by applying a ring opening strategy. Among them, 4-benzyl-1-(2-phenoxyethyl)piperidine 6b (S1R Ki = 0.93 nM) and 4-benzyl-1-(3-phenoxypropyl)piperidine 8b (S1R Ki = 1.1 nM) emerged as high affinity S1R ligands and showed selectivity over S2R and N-methyl-d-aspartate receptor (NMDAR). Candidate compounds behaved as potent S1R agonists being able to enhance the neurite outgrowth induced by nerve growth factor (NGF) in PC12 cell lines. In SH-SY5Y neuroblastoma cell lines they exhibited a neuroprotective effect against rotenone- and NMDA-mediated toxic insults. The neuroprotective activity of 6b and 8b was reverted by co-treatment with an S1R antagonist, PB212. Compounds 6b and 8b were tested for cytotoxicity in-vitro against three human cancer cell lines (A549, LoVo and Panc-1) and in-vivo zebrafish model, resulting in a good efficacy/safety profile, comparable or superior to the reference drug memantine. Overall, these results encourage further preclinical investigations of 6b and 8b on in-vivo models of neurodegenerative diseases.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Receptores sigma , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Peixe-Zebra/metabolismo , Neuroblastoma/tratamento farmacológico , Estresse Oxidativo , Doenças Neurodegenerativas/tratamento farmacológico , Piperidinas/uso terapêutico
11.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37513874

RESUMO

Neuropathic pain (NP) is a chronic condition resulting from damaged pain-signaling pathways. It is a debilitating disorder that affects up to 10% of the world's population. Although opioid analgesics are effective in reducing pain, they present severe risks; so, there is a pressing need for non-opioid pain-relieving drugs. One potential alternative is represented by sigma-1 receptor (S1R) antagonists due to their promising analgesic effects. Here, we report the synthesis and biological evaluation of a series of S1R antagonists based on a 2-aryl-4-aminobutanol scaffold. After assessing affinity toward the S1R and selectivity over the sigma-2 receptor (S2R), we evaluated the agonist/antagonist profile of the compounds by investigating their effects on nerve growth factor-induced neurite outgrowth and aquaporin-mediated water permeability in the presence and absence of oxidative stress. (R/S)-RC-752 emerged as the most interesting compound for S1R affinity (Ki S1R = 6.2 ± 0.9) and functional antagonist activity. Furthermore, it showed no cytotoxic effect in two normal human cell lines or in an in vivo zebrafish model and was stable after incubation in mouse plasma. (R/S)-RC-752 was then evaluated in two animal models of NP: the formalin test and the spinal nerve ligation model. The results clearly demonstrated that compound (R/S)-RC-752 effectively alleviated pain in both animal models, thus providing the proof of concept of its efficacy as an antinociceptive agent.

12.
Mol Med ; 18: 971-81, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22562723

RESUMO

Sustained inflammatory reactions are common pathological events associated with neuron loss in neurodegenerative diseases. Reported evidence suggests that Toll-like receptor 4 (TLR4) is a key player of neuroinflammation in several neurodegenerative diseases. However, the mechanisms by which TLR4 mediates neurotoxic signals remain poorly understood. We investigated the role of TLR4 in in vitro and in vivo settings of motor neuron degeneration. Using primary cultures from mouse spinal cords, we characterized both the proinflammatory and neurotoxic effects of TLR4 activation with lipopolysaccharide (activation of microglial cells, release of proinflammatory cytokines and motor neuron death) and the protective effects of a cyanobacteria-derived TLR4 antagonist (VB3323). With the use of TLR4-deficient cells, a critical role of the microglial component with functionally active TLR4 emerged in this setting. The in vivo experiments were carried out in a mouse model of spontaneous motor neuron degeneration, the wobbler mouse, where we preliminarily confirmed a protective effect of TLR4 antagonism. Compared with vehicle- and riluzole-treated mice, those chronically treated with VB3323 showed a decrease in microglial activation and morphological alterations of spinal cord neurons and a better performance in the paw abnormality and grip-strength tests. Taken together, our data add new understanding of the role of TLR4 in mediating neurotoxicity in the spinal cord and suggest that TLR4 antagonists could be considered in future studies as candidate protective agents for motor neurons in degenerative diseases.


Assuntos
Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/metabolismo , Medula Espinal/patologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Técnicas de Cultura de Células , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ligantes , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/patologia , Neurotoxinas/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Bioorg Med Chem ; 19(21): 6210-24, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967807

RESUMO

Herein we report the synthesis, drug-likeness evaluation, and in vitro studies of new sigma (σ) ligands based on arylalkenylaminic scaffold. For the most active olefin the corresponding arylalkylamine was studied. Novel arylalkenylamines generally possess high σ(1) receptor affinity (K(i) values <25 nM) and good σ(1)/σ(2) selectivity (K(i)σ(2) >100). Particularly, the piperidine derivative (E)-17 and its arylalkylamine analog (R,S)-33 were observed to be excellent σ(1) receptor ligands (K(i)=0.70 and 0.86 nM, respectively) and to display significantly high selectivity over σ(2), µ-, and κ-opioid receptors and phencyclidine (PCP) binding site of the N-methyl-d-aspartate (NMDA) receptors. Moreover in PC12 cells (R,S)-33 promoted the nerve growth factor (NGF)-induced neurite outgrowth and elongation. Co-administration of the selective σ(1) receptor antagonist BD-1063 totally counteracted this effect, confirming that σ(1) receptors are involved in the (R,S)-33 modulation of the NGF effect in PC12 cells and suggesting a σ(1) agonist profile. As a part of our work, a threedimensional σ(1) pharmacophore model was also developed employing GALAHAD methodology. Only active compounds were used for deriving this model. The model included two hydrophobes and a positive nitrogen as relevant features and it was able to discriminate between molecules with and without affinity toward σ(1) receptor subtype.


Assuntos
Aminas/farmacologia , Fator de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Receptores sigma/agonistas , Aminas/síntese química , Aminas/química , Animais , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Neuritos/metabolismo , Células PC12 , Ligação Proteica , Ratos , Receptores sigma/metabolismo
14.
Front Genome Ed ; 3: 644319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713256

RESUMO

Glial cells (astrocytes, oligodendrocytes, and microglia) are emerging as key players in several physiological and pathological processes of the central nervous system (CNS). Astrocytes and oligodendrocytes are not only supportive cells that release trophic factors or regulate energy metabolism, but they also actively modulate critical neuronal processes and functions in the tripartite synapse. Microglia are defined as CNS-resident cells that provide immune surveillance; however, they also actively contribute to shaping the neuronal microenvironment by scavenging cell debris or regulating synaptogenesis and pruning. Given the many interconnected processes coordinated by glial cells, it is not surprising that both acute and chronic CNS insults not only cause neuronal damage but also trigger complex multifaceted responses, including neuroinflammation, which can critically contribute to the disease progression and worsening of symptoms in several neurodegenerative diseases. Overall, this makes glial cells excellent candidates for targeted therapies to treat CNS disorders. In recent years, the application of gene editing technologies has redefined therapeutic strategies to treat genetic and age-related neurological diseases. In this review, we discuss the advantages and limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based gene editing in the treatment of neurodegenerative disorders, focusing on the development of viral- and nanoparticle-based delivery methods for in vivo glial cell targeting.

15.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203263

RESUMO

Reactive microgliosis is a pathological hallmark that accompanies neuronal demise in many neurodegenerative diseases, ranging from acute brain/spinal cord injuries to chronic diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and age-related dementia. One strategy to assess and monitor microgliosis is to use positron emission tomography (PET) by exploiting radioligands selective for the 18 kDa translocator protein (TSPO) which is highly upregulated in the brain in pathological conditions. Several TSPO ligands have been developed and validated, so far. Among these, PBR28 has been widely adopted for PET imaging at both preclinical and clinical levels, thanks to its high brain penetration and high selectivity. For this reason, PBR28 represents a good candidate for functionalization strategies, where this ligand could be exploited to drive selective targeting of TSPO-expressing cells. Since the PBR28 structure lacks functional moieties that could be exploited for derivatization, in this work we explored a synthetic pathway for the synthesis of a PBR28 derivative carrying an alkyne group (PBR-alkyne), enabling the fast conjugation of the ligand through azide-alkyne cycloaddition, also known as click-chemistry. As a proof of concept, we demonstrated in silico that the derivatized PBR28 ligand maintains the capability to fit into the TSPO binding pocked, and we successfully exploited PBR-alkyne to decorate zwitterionic biodegradable polymer nanoparticles (NPs) resulting in efficient internalization in cultured microglia-like cell lines.

16.
J Med Chem ; 64(20): 14997-15016, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34624193

RESUMO

The sigma 1 receptor (S1R) is an enigmatic ligand-operated chaperone involved in many important biological processes, and its functions are not fully understood yet. Herein, we developed a novel series of bitopic S1R ligands as versatile tools to investigate binding processes, allosteric modulation, and the oligomerization mechanism. These molecules have been prepared in the enantiopure form and subjected to a preliminary biological evaluation, while in silico investigations helped to rationalize the results. Compound 7 emerged as the first bitopic S1R ligand endowed with low nanomolar affinity (Ki = 2.6 nM) reported thus far. Computational analyses suggested that 7 may stabilize the open conformation of the S1R by simultaneously binding the occluded primary binding site and a peripheral site on the cytosol-exposed surface. These findings pave the way to new S1R ligands with enhanced activity and/or selectivity, which could also be used as probes for the identification of a potential allosteric site.


Assuntos
Encéfalo/metabolismo , Receptores sigma/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Cobaias , Ligantes , Estrutura Molecular , Neuritos/metabolismo , Células PC12 , Ratos , Receptores sigma/química , Relação Estrutura-Atividade , Receptor Sigma-1
17.
Sci Rep ; 10(1): 17974, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087842

RESUMO

In this work we optimized a novel approach for combining in vivo MRI and ex vivo high-resolution fluorescence microscopy that involves: (i) a method for slicing rat brain tissue into sections with the same thickness and spatial orientation as in in vivo MRI, to better correlate in vivo MRI analyses with ex-vivo imaging via scanning confocal microscope and (ii) an improved clearing protocol compatible with lipophilic dyes that highlight the neurovascular network, to obtain high tissue transparency while preserving tissue staining and morphology with no significant tissue shrinkage or expansion. We applied this methodology in two rat models of glioblastoma (GBM; U87 human glioma cells and patient-derived human glioblastoma cancer stem cells) to demonstrate how vital the information retrieved from the correlation between MRI and confocal images is and to highlight how the increased invasiveness of xenografts derived from cancer stem cells may not be clearly detected by standard in vivo MRI approaches. The protocol studied in this work could be implemented in pre-clinical GBM research to further the development and validation of more predictive and translatable MR imaging protocols that can be used as critical diagnostic and prognostic tools. The development of this protocol is part of the quest for more efficacious treatment approaches for this devastating and still uncurable disease. In particular, this approach could be instrumental in validating novel MRI-based techniques to assess cellular infiltration beyond the macroscopic tumor margins and to quantify neo-angiogenesis.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Corantes Fluorescentes , Glioblastoma/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Imagem Óptica/métodos , Animais , Neoplasias Encefálicas/irrigação sanguínea , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/irrigação sanguínea , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neovascularização Patológica , Ratos
18.
J Vis Exp ; (153)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31814622

RESUMO

Recent advances in viral vector and nanomaterial sciences have opened the way for new cutting-edge approaches to investigate or manipulate the central nervous system (CNS). However, further optimization of these technologies would benefit from methods allowing rapid and streamline determination of the extent of CNS and cell-specific targeting upon administration of viral vectors or nanoparticles in the body. Here, we present a protocol that takes advantage of the high throughput and multiplexing capabilities of flow cytometry to allow a straightforward quantification of different cell subtypes isolated from mouse brain or spinal cord, namely microglia/macrophages, lymphocytes, astrocytes, oligodendrocytes, neurons and endothelial cells. We apply this approach to highlight critical differences between two tissue homogenization methods in terms of cell yield, viability and composition. This could instruct the user to choose the best method depending on the cell type(s) of interest and the specific application. This method is not suited for analysis of anatomical distribution, since the tissue is homogenized to generate a single-cell suspension. However, it allows to work with viable cells and it can be combined with cell-sorting, opening the way for several applications that could expand the repertoire of tools in the hands of the neuroscientist, ranging from establishment of primary cultures derived from pure cell populations, to gene-expression analyses and biochemical or functional assays on well-defined cell subtypes in the context of neurodegenerative diseases, upon pharmacological treatment or gene therapy.


Assuntos
Encéfalo/citologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Medula Espinal/citologia , Animais , Astrócitos , Células Cultivadas , Células Endoteliais , Feminino , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Neurônios , Oligodendroglia
19.
Biomaterials ; 209: 25-40, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31026609

RESUMO

Cell-selective drug release in the central nervous system (CNS) holds great promise for the treatment of many CNS disorders but it is still challenging. We previously demonstrated that polymeric nanoparticles (NPs) injected intra-parenchyma in the CNS can be internalized specifically in microglia/macrophages surrounding the injection site. Here, we explored NPs administration in the cerebrospinal fluid (CSF) to achieve a wider spreading and increased cell targeting throughout the CNS; we generated new NPs variants and studied the effect of modifying size and surface charge on NPs biodistribution and cellular uptake. Intra-cerebroventricular administration resulted in prevalent localization of the NPs in proximity to stem-cell niches, such as around the lateral ventricles, the subventricular zone and the rostral migratory stream. NPs internalization occurred preferentially in brain myeloid cells/microglia. We demonstrated that brain biodistribution and extent of internalization in microglia are influenced by NPs dimensions and can be improved by applying a transient disruption of the blood-brain barrier with mannitol, leading to NPs internalization in up to 25% of brain myeloid/microglia cells. A fraction of the targeted cells was positive for markers of proliferation or stained positive for stemness/progenitor-cell markers such as Nestin, c-kit, or NG2. Interestingly, through these newly formulated NPs we obtained controlled and selective release of drugs otherwise difficult to formulate (such as busulfan and etoposide) to the target cells, preventing unwanted side effects and the toxicity obtained by direct brain delivery of the not encapsulated drugs. Overall, these data provide proof of concept of the applicability of these novel NP-based drug formulations for achieving internalization not only in mature microglia but also possibly in more immature myeloid cells in the brain and pave the way for brain-restricted microglia-targeted drug delivery regimens.


Assuntos
Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Polímeros/química , Polímeros/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Líquido Cefalorraquidiano/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Citometria de Fluxo , Imuno-Histoquímica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
Sci Adv ; 3(12): e1701211, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226242

RESUMO

Recent evidence indicates that hematopoietic stem and progenitor cells (HSPCs) can serve as vehicles for therapeutic molecular delivery to the brain by contributing to the turnover of resident myeloid cell populations. However, such engraftment needs to be fast and efficient to exert its therapeutic potential for diseases affecting the central nervous system. Moreover, the nature of the cells reconstituted after transplantation and whether they could comprise bona fide microglia remain to be assessed. We demonstrate that transplantation of HSPCs in the cerebral lateral ventricles provides rapid engraftment of morphologically, antigenically, and transcriptionally dependable microglia-like cells. We show that the cells comprised within the hematopoietic stem cell compartment and enriched early progenitor fractions generate this microglia-like population when injected in the brain ventricles in the absence of engraftment in the bone marrow. This delivery route has therapeutic relevance because it increases the delivery of therapeutic molecules to the brain, as shown in a humanized animal model of a prototypical lysosomal storage disease affecting the central nervous system.


Assuntos
Ventrículos Cerebrais/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Microglia/citologia , Animais , Antígenos CD34 , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucodistrofia Metacromática/etiologia , Leucodistrofia Metacromática/terapia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA