Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400200

RESUMO

The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.


Assuntos
Proteínas Hedgehog , Humanos , Colesterol/metabolismo , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Ligantes , Proteínas Oncogênicas , Esteróis
2.
Biochemistry ; 61(11): 1022-1028, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34941260

RESUMO

Hedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turnover by an adjacent enzymatic domain, called HhC, which is found in precursor Hh proteins only. Previous attempts to identify antagonists of the intramolecular activity of HhC have yielded inhibitors that bind HhC irreversibly through covalent mechanisms, as is common for protein autoprocessing inhibitors. Here, we report an exception to the "irreversibility rule" for autoprocessing inhibition. Using a fluorescence resonance energy transfer-based activity assay for HhC, we screened a focused library of sterol-like analogues for noncovalent inhibitors and identified and validated four structurally related molecules, which were then used for structure-activity relationship studies. The most effective derivative, tBT-HBT, inhibits HhC noncovalently with an IC50 of 300 nM. An allosteric binding site for tBT-HBT, encompassing residues from the two subdomains of HhC, is suggested by kinetic analysis, mutagenesis studies, and photoaffinity labeling. The inhibitors described here resemble a family of noncovalent, allosteric inducers of HhC paracatalysis which we have described previously. The inhibition and the induction appear to be mediated by a shared allosteric site on HhC.


Assuntos
Proteínas Hedgehog , Esteróis , Sítios de Ligação , Cinética , Ligantes , Esteróis/química
3.
Biochemistry ; 59(6): 736-741, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32013401

RESUMO

Hedgehog proteins, a family of vital cell signaling factors, are expressed in precursor form, which requires specialized autoprocessing, called cholesterolysis, for full biological activity. Cholesterolysis occurs in cis through the action of the precursor's C-terminal enzymatic domain, HhC. In this work, we describe HhC activator compounds (HACs), a novel class of noncovalent modulators that induce autoprocessing infidelity, diminishing native cholesterolysis in favor of precursor autoproteolysis, an otherwise minor and apparently nonphysiological side reaction. HAC-induced autoproteolysis generates hedgehog protein that is cholesterol free and hence signaling deficient. The most effective HAC has an AC50 of 9 µM, accelerates HhC autoproteolytic activity by 225-fold, and functions in the presence and absence of cholesterol, the native substrate. HACs join a rare class of "antagonists" that suppress native enzymatic activity by subverting mechanistic fidelity.


Assuntos
Colesterol/biossíntese , Proteínas de Drosophila/biossíntese , Proteínas Hedgehog/biossíntese , Catálise , Colesterol/genética , Proteínas de Drosophila/genética , Variação Genética/fisiologia , Proteínas Hedgehog/genética , Proteólise
4.
Methods Enzymol ; 685: 1-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245899

RESUMO

Paracatalytic inducers are antagonists that shift the specificity of biological catalysts, resulting in non-native transformations. In this Chapter we describe methods to discover paracatalytic inducers of Hedgehog (Hh) protein autoprocessing. Native autoprocessing uses cholesterol as a substrate nucleophile to assist in cleaving an internal peptide bond within a precursor form of Hh. This unusual reaction is brought about by HhC, an enzymatic domain that resides within the C-terminal region of Hh precursor proteins. Recently, we reported paracatalytic inducers as a novel class of Hh autoprocessing antagonists. These small molecules bind HhC and tilt the substrate specificity away from cholesterol in favor of solvent water. The resulting cholesterol-independent autoproteolysis of the Hh precursor generates a non-native Hh side product with substantially reduced biological signaling activity. Protocols are provided for in vitro FRET-based and in-cell bioluminescence assays to discover and characterize paracatalytic inducers of Drosophila and human hedgehog protein autoprocessing, respectively.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Proteínas de Drosophila/química , Drosophila/metabolismo , Colesterol/metabolismo , Catálise
5.
Chem Commun (Camb) ; 55(12): 1829-1832, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672911

RESUMO

Cholesterolysis of Hedgehog family proteins couples endoproteolysis to protein C-terminal sterylation. The transformation is self-catalyzed by HhC, a partially characterized enzymatic domain found in precursor forms of Hedgehog. Here we explore spatial ambiguity in sterol recognition by HhC, using a trio of derivatives where the sterol A-ring is contracted, fused, or distorted. Sterylation assays indicate that these geometric variants react as substrates with relative activity: cholesterol, 1.000 > A-ring contracted, 0.100 > A-ring fused, 0.020 > A-ring distorted, 0.005. Experimental results and computational sterol docking into the first HhC homology model suggest a partially unstructured binding site with substrate recognition governed in large part by hydrophobic interactions.


Assuntos
Proteínas Hedgehog/metabolismo , Esteróis/química , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Hedgehog/química , Humanos , Cinética , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA