RESUMO
Air-cushioned spheres are widely used as treadmills to study behavioural and neurophysiological questions in numerous species. We describe an improved spherical treadmill design that reliably registers the path and walking behaviour of an animal walking on top of the sphere. The simple and robust set-up consists of a very light hollowed styrofoam ball supported by an air stream in a hollow half sphere and can be used indoors and outdoors. Two optical mouse sensors provided with lenses of 4.6â mm focal length detect the motion of the sphere with a temporal resolution of more than 200 frames s-1 and a spatial resolution of less than 0.2â mm. The treadmill can be used in an open- or closed-loop configuration with respect to yaw of the animal. The tethering allows animals to freely adjust their body posture and in the closed-loop configuration to quickly rotate around their yaw axis with their own moment of inertia. In this account, we present the first evidence of naturalistic homing navigation on a spherical treadmill for two species of Cataglyphis desert ants. We were able to evaluate with good precision the walking speed and angular orientation at any time. During homing the ants showed a significant difference in walking speed between the approach and search phases; moreover, they slowed down significantly as soon as they reached zero vector state, the fictive nest position.
Assuntos
Formigas/fisiologia , Animais , Comportamento Apetitivo , Clima Desértico , Comportamento de Retorno ao Território Vital , Orientação , Caminhada , Zoologia/métodosRESUMO
Cataglyphis ants are renowned for their impressive navigation skills, which have been studied in numerous experiments during forward locomotion. However, the ants' navigational performance during backward homing when dragging large food loads has not been investigated until now. During backward locomotion, the odometer has to deal with unsteady motion and irregularities in inter-leg coordination. The legs' sensory feedback during backward walking is not just a simple reversal of the forward stepping movements: compared with forward homing, ants are facing towards the opposite direction during backward dragging. Hence, the compass system has to cope with a flipped celestial view (in terms of the polarization pattern and the position of the sun) and an inverted retinotopic image of the visual panorama and landmark environment. The same is true for wind and olfactory cues. In this study we analyze for the first time backward-homing ants and evaluate their navigational performance in channel and open field experiments. Backward-homing Cataglyphis fortis desert ants show remarkable similarities in the performance of homing compared with forward-walking ants. Despite the numerous challenges emerging for the navigational system during backward walking, we show that ants perform quite well in our experiments. Direction and distance gauging was comparable to that of the forward-walking control groups. Interestingly, we found that backward-homing ants often put down the food item and performed foodless search loops around the left food item. These search loops were mainly centred around the drop-off position (and not around the nest position), and increased in length the closer the ants came to their fictive nest site.
Assuntos
Formigas/fisiologia , Clima Desértico , Comportamento de Retorno ao Território Vital/fisiologia , Navegação Espacial/fisiologia , Animais , OrientaçãoRESUMO
For insects, flexibility in the performance of terrestrial locomotion is a vital part of facing the challenges of their often unpredictable environment. Arthropods such as scorpions and crustaceans can switch readily from forward to backward locomotion, but in insects this behaviour seems to be less common and, therefore, is only poorly understood. Here we present an example of spontaneous and persistent backward walking in Cataglyphis desert ants that allows us to investigate rearward locomotion within a natural context. When ants find a food item that is too large to be lifted up and to be carried in a normal forward-faced orientation, they will drag the load walking backwards to their home nest. A detailed examination of this behaviour reveals a surprising flexibility of the locomotor output. Compared with forward walks with regular tripod coordination, no main coordination pattern can be assigned to rearward walks. However, we often observed leg-pair-specific stepping patterns. The front legs frequently step with small stride lengths, while the middle and the hind legs are characterized by less numerous but larger strides. But still, these specializations show no rigidly fixed leg coupling, nor are they strictly embedded within a temporal context; therefore, they do not result in a repetitive coordination pattern. The individual legs act as separate units, most likely to better maintain stability during backward dragging.
Assuntos
Formigas/fisiologia , Clima Desértico , Extremidades/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Locomoção/fisiologia , Animais , Gravação em VídeoRESUMO
Path integration, although inherently error-prone, is a common navigation strategy in animals, particularly where environmental orientation cues are rare. The desert ant Cataglyphis fortis is a prominent example, covering large distances on foraging excursions. The stride integrator is probably the major source of path integration errors. A detailed analysis of walking behaviour in Cataglyphis is thus of importance for assessing possible sources of errors and potential compensation strategies. Zollikofer (J Exp Biol 192:95-106, 1994a) demonstrated consistent use of the tripod gait in Cataglyphis, and suggested an unexpectedly constant stride length as a possible means of reducing navigation errors. Here, we extend these studies by more detailed analyses of walking behaviour across a large range of walking speeds. Stride length increases linearly and stride amplitude of the middle legs increases slightly linearly with walking speed. An initial decrease of swing phase duration is observed at lower velocities with increasing walking speed. Then it stays constant across the behaviourally relevant range of walking speeds. Walking speed is increased by shortening of the stance phase and of the stance phase overlap. At speeds larger than 370 mm s(-1), the stride frequency levels off, the duty factor falls below 0.5, and Cataglyphis transitions to running with aerial phases.
Assuntos
Formigas/fisiologia , Clima Desértico , Orientação/fisiologia , Corrida/fisiologia , Caminhada/fisiologia , AnimaisRESUMO
North African desert ants, Cataglyphis, use path integration to calculate a home vector during their foraging trips, constantly informing them about their position relative to the nest. This home vector is also used to find the way back to a productive feeding site the ant has encountered and thus memorized. When the animal fails to arrive at its goal after having run off the home or food vector, a systematic search is initiated. The basic search strategies are identical for nest and food searches, consisting of a search spiral superimposed by a random walk. While nest searches have been investigated in much detail, food site searches have received comparatively little attention. Here, we quantify and compare nest and food site searches recorded under similar conditions, particularly constant nest-feeder distance, and we observe notable differences in nest and food search performances. The parameters of nest searches are relatively constant and improve little with experience, although those small improvements had not been recognized previously. Food searches, by contrast, are more flexible and cover smaller or larger areas, mainly depending on the reliability of food encounter over several visits. Intriguingly, food site searches may be significantly more focussed than nest searches, although the nest should be the most important goal in an ant's life. These results demonstrate both adaptability and high accuracy of the ants' search programme.
Assuntos
Formigas/fisiologia , Comportamento Apetitivo , Comportamento de Retorno ao Território Vital , Animais , Alimentos , Orientação , TunísiaRESUMO
Many arachnid taxa have evolved unique, highly specialized sensory structures such as antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions. Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional pedipalps, which are good candidates for being the primary sensory appendages. However, only little is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil. Due to the innervation pattern and structural appearance, we conclude that these neuropils are the first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda, but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites of the respective modality.
RESUMO
Navigation plays an essential role for many animals leading a mobile mode of life, and for central place foragers in particular. One important prerequisite for navigation is the ability to estimate distances covered during locomotion. It has been shown that Cataglyphis desert ants, well-established model organisms in insect navigation, use two odometer mechanisms, namely, stride and optic flow integration. Although both mechanisms are well established, their mode of interaction to build one odometer output remains enigmatic. We tackle this problem by selectively covering the ventral eye parts in Cataglyphis fortis foragers, the eye regions responsible for optic flow input in odometry. Exclusion of optic flow cues was implemented during different sections of outbound and inbound travel. This demonstrated that the two odometers have separate distance memories that interact in determining homing distance. Possible interpretations posit that the two odometer memories (i) take on different relative weights according to context or (ii) compete in a winner-take-all mode. Explanatory values and implications of such interpretations are discussed. We are able to provide a rough quantitative assessment of odometer cue interaction. An understanding of the interaction of different odometer mechanisms appears valuable not only for animal navigation research but may inform discussions on sensor fusion in both behavioural contexts and potential technical applications.
Assuntos
Formigas/fisiologia , Percepção de Distância/fisiologia , Memória/fisiologia , Navegação Espacial/fisiologia , Animais , Sinais (Psicologia) , Clima Desértico , Olho/fisiopatologia , Comportamento de Retorno ao Território Vital/fisiologia , Locomoção/fisiologia , Fluxo Óptico/fisiologiaRESUMO
Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner.