Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 49(21): 12069-12088, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850120

RESUMO

Oligonucleotides is an emerging class of chemically-distinct therapeutic modalities, where extensive chemical modifications are fundamental for their clinical applications. Inter-nucleotide backbones are critical to the behaviour of therapeutic oligonucleotides, but clinically explored backbone analogues are, effectively, limited to phosphorothioates. Here, we describe the synthesis and bio-functional characterization of an internucleotide (E)-vinylphosphonate (iE-VP) backbone, where bridging oxygen is substituted with carbon in a locked stereo-conformation. After optimizing synthetic pathways for iE-VP-linked dimer phosphoramidites in different sugar contexts, we systematically evaluated the impact of the iE-VP backbone on oligonucleotide interactions with a variety of cellular proteins. Furthermore, we systematically evaluated the impact of iE-VP on RNA-Induced Silencing Complex (RISC) activity, where backbone stereo-constraining has profound position-specific effects. Using Huntingtin (HTT) gene causative of Huntington's disease as an example, iE-VP at position 6 significantly enhanced the single mismatch discrimination ability of the RISC without negative impact on silencing of targeting wild type htt gene. These findings suggest that the iE-VP backbone can be used to modulate the activity and specificity of RISC. Our study provides (i) a new chemical tool to alter oligonucleotide-enzyme interactions and metabolic stability, (ii) insight into RISC dynamics and (iii) a new strategy for highly selective SNP-discriminating siRNAs.


Assuntos
Doença de Huntington/genética , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Alelos , Humanos , Organofosfonatos
2.
Brain ; 137(Pt 3): 819-33, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24459107

RESUMO

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.


Assuntos
Doença de Huntington/genética , Doença de Huntington/patologia , Células Mieloides/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Transdução de Sinais/genética , Regulação da Expressão Gênica/imunologia , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Imunidade Inata/genética , Células Mieloides/imunologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno/uso terapêutico , Transdução de Sinais/imunologia , Células U937
3.
Nat Commun ; 13(1): 5802, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192390

RESUMO

Small interfering RNAs are a new class of drugs, exhibiting sequence-driven, potent, and sustained silencing of gene expression in vivo. We recently demonstrated that siRNA chemical architectures can be optimized to provide efficient delivery to the CNS, enabling development of CNS-targeted therapeutics. Many genetically-defined neurodegenerative disorders are dominant, favoring selective silencing of the mutant allele. In some cases, successfully targeting the mutant allele requires targeting single nucleotide polymorphism (SNP) heterozygosities. Here, we use Huntington's disease (HD) as a model. The optimized compound exhibits selective silencing of mutant huntingtin protein in patient-derived cells and throughout the HD mouse brain, demonstrating SNP-based allele-specific RNAi silencing of gene expression in vivo in the CNS. Targeting a disease-causing allele using RNAi-based therapies could be helpful in a range of dominant CNS disorders where maintaining wild-type expression is essential.


Assuntos
Doença de Huntington , Alelos , Animais , Engenharia Química , Inativação Gênica , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Hum Gene Ther ; 33(1-2): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34376056

RESUMO

Huntington's disease (HD) is a devastating, autosomal dominant neurodegenerative disease caused by a trinucleotide repeat expansion in the huntingtin (HTT) gene. Inactivation of the mutant allele by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 based gene editing offers a possible therapeutic approach for this disease, but permanent disruption of normal HTT function might compromise adult neuronal function. Here, we use a novel HD mouse model to examine allele-specific editing of mutant HTT (mHTT), with a BAC97 transgene expressing mHTT and a YAC18 transgene expressing normal HTT. We achieve allele-specific inactivation of HTT by targeting a protein coding sequence containing a common, heterozygous single nucleotide polymorphism (SNP). The outcome is a marked and allele-selective reduction of mHTT protein in a mouse model of HD. Expression of a single CRISPR-Cas9 nuclease in neurons generated a high frequency of mutations in the targeted HD allele that included both small insertion/deletion (InDel) mutations and viral vector insertions. Thus, allele-specific targeting of InDel and insertion mutations to heterozygous coding region SNPs provides a feasible approach to inactivate autosomal dominant mutations that cause genetic disease.


Assuntos
Doença de Huntington , Alelos , Animais , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/terapia , Camundongos , Polimorfismo de Nucleotídeo Único
5.
Trends Mol Med ; 26(10): 889-890, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893090

RESUMO

In a meticulous study, Humbert, Durr, and colleagues showed evidence for aberrant neurodevelopment in both Huntington's disease (HD) and mouse models of HD. We consider the implications of prenatal pathological changes for the onset and progression of HD and their relatedness to current therapeutic plans.


Assuntos
Doença de Huntington , Animais , Progressão da Doença , Humanos , Camundongos
6.
Hum Gene Ther ; 29(6): 663-673, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29207890

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CßA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , MicroRNAs/metabolismo , Proteínas Mutantes/metabolismo , Neostriado/metabolismo , Animais , Animais Geneticamente Modificados , Dependovirus/genética , Modelos Animais de Doenças , Eletrólitos/metabolismo , Vetores Genéticos/metabolismo , Genoma Viral , Humanos , Imunoensaio , Injeções , Rim/fisiopatologia , Fígado/fisiopatologia , MicroRNAs/genética , Microglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos
7.
Mol Ther Nucleic Acids ; 7: 324-334, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624208

RESUMO

Huntington's disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vector, we delivered a mir-155-based artificial miRNA under the control of the chicken ß-actin or human U6 promoter. In mouse brain, the artificial miRNA reduced the human huntingtin mRNA by 50%. The U6, but not the CßA promoter, produced the artificial miRNA at supraphysiologic levels. Embedding the antisense strand in a U6-mir-30 scaffold reduced expression of the antisense strand but increased the sense strand. In mice treated with scAAV9-U6-mir-155-HTT or scAAV9-CßA-mir-155-HTT, activated microglia were present around the injection site 1 month post-injection. Six months post-injection, mice treated with scAAV9-CßA-mir-155-HTT were indistinguishable from controls. Those that received scAAV9-U6-mir-155-HTT showed behavioral abnormalities and striatal damage. In conclusion, miRNA backbone and promoter can be used together to modulate expression levels and strand selection of artificial miRNAs, and in brain, the CßA promoter can provide an effective and safe dose of a human huntingtin miRNA.

8.
Sci Rep ; 7: 46740, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436437

RESUMO

Post-transcriptional gene silencing is a promising therapy for the monogenic, autosomal dominant, Huntington's disease (HD). However, wild-type huntingtin (HTT) has important cellular functions, so the ideal strategy would selectively lower mutant HTT while sparing wild-type. HD patients were genotyped for heterozygosity at three SNP sites, before phasing each SNP allele to wild-type or mutant HTT. Primary ex vivo myeloid cells were isolated from heterozygous patients and transfected with SNP-targeted siRNA, using glucan particles taken up by phagocytosis. Highly selective mRNA knockdown was achieved when targeting each allele of rs362331 in exon 50 of the HTT transcript; this selectivity was also present on protein studies. However, similar selectivity was not observed when targeting rs362273 or rs362307. Furthermore, HD myeloid cells are hyper-reactive compared to control. Allele-selective suppression of either wild-type or mutant HTT produced a significant, equivalent reduction in the cytokine response of HD myeloid cells to LPS, suggesting that wild-type HTT has a novel immune function. We demonstrate a sequential therapeutic process comprising genotyping and mutant HTT-linkage of SNPs, followed by personalised allele-selective suppression in a small patient cohort. We further show that allele-selectivity in ex vivo patient cells is highly SNP-dependent, with implications for clinical trial target selection.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Mutantes/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Alelos , Células Cultivadas , Estudos de Coortes , Genótipo , Humanos , Doença de Huntington/sangue , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Interferência de RNA
9.
J Huntingtons Dis ; 5(1): 33-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003665

RESUMO

BACKGROUND: Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntington's disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments. OBJECTIVES: We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA. METHODS: Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection. RESULTS: Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites. CONCLUSIONS: Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Mutação/genética , Interferência de RNA , RNA Mensageiro/genética , Repetições de Trinucleotídeos/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Éxons/genética , Técnicas de Silenciamento de Genes , Proteína Huntingtina/análise , Proteína Huntingtina/metabolismo , Fígado/metabolismo , Camundongos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
10.
J Huntingtons Dis ; 2(4): 491-500, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25062733

RESUMO

BACKGROUND: Huntington's disease is caused by expansion of CAG trinucleotide repeats in the first exon of the huntingtin gene, which is essential for both development and neurogenesis. Huntington's disease is autosomal dominant. The normal allele contains 6 to 35 CAG triplets (average, 18) and the mutant, disease-causing allele contains >36 CAG triplets (average, 42). OBJECTIVE: We examined 279 postmortem brain samples, including 148 HD and 131 non-HD controls. A total of 108 samples from 87 HD patients that are heterozygous at SNP rs362307, with a normal allele (18 to 27 CAG repeats) and a mutant allele (39 to 73 CAG repeats) were used to measure relative abundance of mutant and wild-type huntingtin mRNA. METHODS: We used allele-specific, quantitative RT-PCR based on SNP heterozygosity to estimate the relative amount of mutant versus normal huntingtin mRNA in postmortem brain samples from patients with Huntington's disease. RESULTS: In the cortex and striatum, the amount of mRNA from the mutant allele exceeds that from the normal allele in 75% of patients. In the cerebellum, no significant difference between the two alleles was evident. Brain tissues from non-HD controls show no significant difference between two alleles of huntingtin mRNAs. Allelic differences were more pronounced at early neuropathological grades (grades 1 and 2) than at late grades (grades 3 and 4). CONCLUSION: More mutant HTT than normal could arise from increased transcription of mutant HTT allele, or decreased clearance of mutant HTT mRNA, or both. An implication is that equimolar silencing of both alleles would increase the mutant HTT to normal HTT ratio.


Assuntos
Encéfalo/metabolismo , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Desequilíbrio Alélico , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos
11.
Curr Biol ; 19(9): 774-8, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19361997

RESUMO

Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.


Assuntos
Terapia Genética/métodos , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Triagem de Portadores Genéticos , Humanos , Proteína Huntingtina , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA