Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(26): e2308166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321841

RESUMO

The formation mechanism(s) of high-index facets in metal oxides is not widely understood but remains a topic of interest owing to the challenges of stabilizing high-energy surfaces. These metal oxide crystal surfaces are expected to provide unique physicochemical characteristics; therefore, understanding crystallization pathways may enable the rational design of materials with controlled properties. Here the crystallization of NiO via thermal decomposition of a nickel source in excess of alkali chlorides is examined, focusing on KCl, which produces trapezohedral NiO (311) particles that are difficult to achieve through alternative methods. Trapezohedral NiO crystals are confirmed to grow via a molten eutectic where NiO nucleation is followed by nonclassical crystallization through processes resembling colloidal assembly. Aggregates comprised of NiO nanocrystals form mesostructures that ripen with heating time and exhibit fewer grain boundaries as they transition into single-crystalline particles. At temperatures higher than those of NiO crystallization, there is a restructuring of (311) facets into microfacets exposing (111) and (100) surfaces. These findings illustrate the complex crystallization processes taking place during molten salt synthesis. The ability to generate metal oxide particles with high-index facets has the potential to be a more generalized approach to unlock the physicochemical properties of materials for diverse applications.

2.
Chemphyschem ; 24(14): e202300244, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37294161

RESUMO

Olefin oligomerization by γ-Al2 O3 has recently been reported, and it was suggested that Lewis acid sites are catalytic. The goal of this study is to determine the number of active sites per gram of alumina to confirm that Lewis acid sites are indeed catalytic. Addition of an inorganic Sr oxide base resulted in a linear decrease in the propylene oligomerization conversion at loadings up to 0.3 wt %; while, there is a >95 % loss in conversion above 1 wt % Sr. Additionally, there was a linear decrease in the intensity of the Lewis acid peaks of absorbed pyridine in the IR spectra with an increase in Sr loading, which correlates with the loss in propylene conversion, suggesting that Lewis acid sites are catalytic. Characterization of the Sr structure by XAS and STEM indicates that single Sr2+ ions are bound to the γ-Al2 O3 surface and poison one catalytic site per Sr ion. The maximum loading needed to poison all catalytic sites, assuming uniform surface coverage, was ∼0.4 wt % Sr, giving an acid site density of ∼0.2 sites per nm2 of γ-Al2 O3 , or approximately 3 % of the alumina surface.

3.
Angew Chem Int Ed Engl ; 59(35): 15119-15123, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32302436

RESUMO

Metal oxides exposing high-index facets are potentially impactful in catalysis and adsorption processes owing to under-coordinated ions and polarities that alter their interfacial properties compared to low-index facets. Here, we report molten-salt syntheses of NiO particles exposing a variety of crystal facets. We show that for a given anion (nitrate or chloride), the alkali cation has a notable impact on the formation of crystals exposing {311}, {611}, {100}, and {111} faces. Based on a parametric analysis of synthesis conditions, we postulate that the crystallization mechanism is governed by the formation of growth units consisting of NiII complexes whose coordination numbers are determined by temperature and the selection of anion (associated to the coordination sphere) and alkali cation (associated with the outer coordination sphere). Notably, our findings reveal that high-index facets are particularly favored in chloride media and are stable under prolonged periods of catalysis and steaming.

4.
J Colloid Interface Sci ; 676: 485-495, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047376

RESUMO

This work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-C3N4), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m2 g-1) and an average pore diameter (3.6 nm). A simple microwave-assisted preparation method was employed to decorate Cu single-atom over mpg-C3N4 support. The Cu single-atom decorated on mpg-C3N4 support (Cu@mpg-C3N4) is characterized by various characterization techniques, including XRD, UV-visible spectrophotometry, HRTEM, HAADF-STEM with elemental mapping, AC-STEM, ICP-OES, XANES, EXAFS, and BET surface area. These characterization studies confirmed that the Cu@mpg-C3N4 catalyst exhibited high surface area, mesoporous nature, medium band gap, and low metal loading. The as-synthesized and well-characterized Cu@mpg-C3N4 single-atom photocatalyst is then evaluated for its efficacy in converting N-heterocycles into corresponding N-heteroaromatic compounds with excellent conversion and selectivity (>99 %). This transformation is achieved using water as a green solvent and a 30 W white light as a visible light source, demonstrating the catalyst's potential for sustainable and environmentally benign reactions.

5.
Angew Chem Int Ed Engl ; 51(52): 13163-7, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23161647

RESUMO

A simple and inexpensive approach is used to coat metal oxide surfaces (SBA-15) with thin films of carbon. These carbon films provide improved hydrothermal stability to oxides, such as silica and alumina, which are not otherwise stable at elevated temperatures in the presence of liquid water. Furthermore, the carbon film changes the surface chemistry of the support.

6.
J Am Chem Soc ; 133(32): 12675-89, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21736345

RESUMO

A ReO(x)-promoted Rh/C catalyst is shown to be selective in the hydrogenolysis of secondary C-O bonds for a broad range of cyclic ethers and polyols, these being important classes of compounds in biomass-derived feedstocks. Experimentally observed reactivity trends, NH(3) temperature-programmed desorption (TPD) profiles, and results from theoretical calculations based on density functional theory (DFT) are consistent with the hypothesis of a bifunctional catalyst that facilitates selective hydrogenolysis of C-O bonds by acid-catalyzed ring-opening and dehydration reactions coupled with metal-catalyzed hydrogenation. The presence of surface acid sites on 4 wt % Rh-ReO(x)/C (1:0.5) was confirmed by NH(3) TPD, and the estimated acid site density and standard enthalpy of NH(3) adsorption were 40 µmol g(-1) and -100 kJ mol(-1), respectively. Results from DFT calculations suggest that hydroxyl groups on rhenium atoms associated with rhodium are acidic, due to the strong binding of oxygen atoms by rhenium, and these groups are likely responsible for proton donation leading to the formation of carbenium ion transition states. Accordingly, the observed reactivity trends are consistent with the stabilization of resulting carbenium ion structures that form upon ring-opening or dehydration. The presence of hydroxyl groups that reside α to carbon in the C-O bond undergoing scission can form oxocarbenium ion intermediates that significantly stabilize the resulting transition states. The mechanistic insights from this work may be extended to provide a general description of a new class of bifunctional heterogeneous catalysts, based on the combination of a highly reducible metal with an oxophilic metal, for the selective C-O hydrogenolysis of biomass-derived feedstocks.

7.
ChemSusChem ; 10(2): 359-362, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27863066

RESUMO

Catalytic oxidation of alcohols often requires the presence of expensive transition metals. Herein, it is shown that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O2 in the aqueous phase. The activity of the catalyst can be regenerated by a mild treatment in H2 . An observed kinetic isotope effect indicates that ß-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal-nitrogen-carbon materials for alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but addition of 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.


Assuntos
Álcool Benzílico/química , Ferro/química , Catálise , Furaldeído/análogos & derivados , Furaldeído/química , Cinética , Nitrogênio/química , Oxirredução , Água/química
8.
ACS Catal ; 6(4): 2257-2264, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27076991

RESUMO

Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt. In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al2O3.

9.
J Phys Chem B ; 109(7): 2873-80, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16851299

RESUMO

Highly dispersed gold particles (<2 nm) were synthesized within the pores of mesoporous silica with pore sizes ranging from 2.2 to 6.5 nm and different pore structures (2D-hexagonal, 3D-hexagonal, and cubic). The catalysts were reduced in flowing H2 at 200 degrees C and then used for CO oxidation at temperatures ranging from 25 to 400 degrees C. The objective of this study was to investigate the role of pore size and structure in controlling the thermal sintering of Au nanoparticles. Our study shows that sintering of Au particles is dependent on pore size, pore wall thickness (strength of pores), and pore connectivity. A combination of high-resolution TEM/STEM and SEM was used to measure the particle size distribution and to determine whether the Au particles were located within the pores or had migrated to the external silica surface.

10.
Chem Commun (Camb) ; (22): 2620-1, 2004 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-15543309

RESUMO

Pores arranged in a two-dimensional hexagonal structure inside spherical mesoporous silica particles help to prevent the thermal sintering of gold nanoparticles compared to straight pores in MCM-41.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA