Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Digit Imaging ; 36(1): 365-372, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36171520

RESUMO

We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusive categories, including "typical," "indeterminate," and "atypical appearance" for COVID-19, or "negative for pneumonia," adapted from previously published guidelines, and bounding boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic and noncommercial use.


Assuntos
COVID-19 , Humanos , Inteligência Artificial , Radiografia , Aprendizado de Máquina , Radiologistas , Radiografia Torácica/métodos
2.
Vaccines (Basel) ; 10(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35891208

RESUMO

Purpose: We describe a diagnostic procedure suitable for scheduling (re-)vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) according to individual state of humoral immunization. Methods: To clarify the relation between quantitative antibody measurements and humoral ex vivo immune responsiveness, we monitored 124 individuals before, during and six months after vaccination with Spikevax (Moderna, Cambridge, MA, USA). Antibodies against SARS-CoV-2 spike (S1) protein receptor-binding domain (S1-AB) and against nucleocapsid antigens were measured by chemiluminescent immunoassay (Roche). Virus-neutralizing activities were determined by surrogate assays (NeutraLISA, Euroimmune; cPass, GenScript). Neutralization of SARS-CoV-2 in cell culture (full virus NT) served as an ex vivo correlate for humoral immune responsiveness. Results: Vaccination responses varied considerably. Six months after the second vaccination, participants still positive for the full virus NT were safely determined by S1-AB levels ≥1000 U/mL. The full virus NT-positive fraction of participants with S1-AB levels <1000 U/mL was identified by virus-neutralizing activities >70% as determined by surrogate assays (NeutraLISA or cPas). Participants that were full virus NT-negative and presumably insufficiently protected could thus be identified by a sensitivity of >83% and a specificity of >95%. Conclusion: The described diagnostic strategy possibly supports individualized (re-)vaccination schedules based on simple and rapid measurement of serum-based SARS-CoV-2 antibody levels. Our data apply only to WUHAN-type SARS-CoV-2 virus and the current version of the mRNA vaccine from Moderna (Cambridge, MA, USA). Adaptation to other vaccines and more recent SARS-CoV-2 strains will require modification of cut-offs and re-evaluation of sensitivity/specificity.

3.
J Biomed Mater Res A ; 100(10): 2732-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22623404

RESUMO

More than 400,000 primary hip and knee replacement surgeries are performed each year in the United States. From these procedures, approximately 0.5-3% will become infected and when considering revision surgeries, this rate has been found to increase significantly. Antibiotic-resistant bacterial infections are a growing problem in patient care. This in vitro research investigated the antimicrobial potential of the polymer released, broad spectrum, Cationic Steroidal Antimicrobial-13 (CSA-13) for challenges against 5 × 10(8) colony forming units (CFU) of methicillin-resistant Staphylococcus aureus (MRSA). It was hypothesized that a weight-to-weight (w/w) concentration of 18% CSA-13 in silicone would exhibit potent bactericidal potential when used as a controlled release device coating. When incorporated into a polymeric device coating, the 18% (w/w) broad-spectrum polymer released CSA-13 antimicrobial eliminated 5 × 10(8) CFU of MRSA within 8 h. In the future, these results will be utilized to develop a sheep model to assess CSA-13 for the prevention of perioperative device-related infections in vivo.


Assuntos
Anti-Infecciosos/uso terapêutico , Materiais Revestidos Biocompatíveis/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Polímeros/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Anti-Infecciosos/farmacologia , Contagem de Colônia Microbiana , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Porosidade , Infecções Estafilocócicas/microbiologia , Esteroides/farmacologia , Esteroides/uso terapêutico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA