Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(39): e2210908119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122239

RESUMO

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Šfrom the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Oxigenases , Tirosina , para-Aminobenzoatos , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Ácido Fólico , Ferro/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Tirosina/metabolismo , para-Aminobenzoatos/metabolismo
2.
Biochemistry ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39471288

RESUMO

Chlamydia protein associating with death domains (CtCADD) is involved in the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe2 cofactor, previous activity studies have shown that CtCADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe2+/Mn2+ cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an in crystallo metalation approach, CtCADD was solved in the apo, Fe2+2, Mn2+2, and catalytically active Fe2+/Mn2+ forms to identify the probable site for Mn binding. The analysis of CtCADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn3+/Fe3+ cluster.

3.
Biochemistry ; 62(22): 3276-3282, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37936269

RESUMO

Chlamydia protein associating with death domains (CADD), the founding member of a recently discovered class of nonheme dimetal enzymes termed hemeoxygenase-like dimetaloxidases (HDOs), plays an indispensable role in pathogen survival. CADD orchestrates the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate via the self-sacrificial excision of a protein-derived tyrosine (Tyr27) and several additional processing steps, the nature and timing of which have yet to be fully clarified. Nuclear magnetic resonance (NMR) and proteomics approaches reveal the source and probable timing of amine installation by a neighboring lysine (Lys152). Turnover studies using limiting O2 have identified a para-aminobenzaldehyde (pABCHO) metabolic intermediate that is formed on the path to pABA formation. The use of pABCHO and other probe substrates shows that the heterobimetallic Fe/Mn form of the enzyme is capable of oxygen insertion to generate the pABA-carboxylate.


Assuntos
Ácido 4-Aminobenzoico , para-Aminobenzoatos , para-Aminobenzoatos/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Ácido Fólico/metabolismo
5.
Heliyon ; 9(3): e13559, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873493

RESUMO

Introduction: Polysaccharide and alcohol extracts of Anoectochilus formosanus Hayata have attracted great attention as they exhibit noteworthy properties such as prebiotic and anti-hyperglycemic effects. However, the antioxidant and wound-healing activities of the polysaccharide extract as well as the antibacterial and cytotoxic effects of the ethanol extracts have not been thoroughly uncovered. Therefore, our study investigated these bioactivities of the two extracts prepared from Anoectochilus formosanus to broaden understandings of medical benefits of the plant. Methods: The monosaccharide composition was analyzed by HPAEC-PAD. The antioxidant and wound-healing activities of the polysaccharide extract were evaluated by ABTS and scratch assays, respectively. The broth dilution method was used to determine the antibacterial ability of the ethanol extract. Additionally, the cytotoxic and mechanistic effects of this extract against hepatocellular carcinoma HUH-7 cells was assessed by MTT assay, qRT-PCR and Western blotting methods. Results: The polysaccharide extract possessed an effective free radical scavenging ability in an ABTS assay (IC50 = 44.92 µg/ml). The extract also ameliorated wound recovery in a fibroblast scratch assay. Meanwhile, the ethanol extract was able to inhibit the growth of Staphylococcus aureus (MIC = 2500 µg/ml), Bacillus cereus (MIC = 2500 µg/ml), Escherichia coli (MIC = 2500 µg/ml), and Pseudomonas aeruginosa (MIC = 1250 µg/ml). Additionally, it repressed the viability of HUH-7 cells (IC50 = 53.44 µg/ml), possibly through upregulating the expression of caspase 3 (CASP3), CASP8, and CASP9 at both mRNA and protein levels. Conclusion: The polysaccharide extract of A. formosanus exhibited the antioxidant and wound-healing properties whereas the ethanol extract showed the antibacterial activity and cytotoxicity against HUH-7 cells. These findings specify notable biological effects of the two extracts which could be of potential use in human healthcare.

6.
J Phys Chem B ; 126(39): 7567-7578, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36137238

RESUMO

Polysaccharide monooxygenases (PMOs) use a type-2 copper center to activate O2 for the selective hydroxylation of one of the two C-H bonds of glycosidic linkages. Our electron paramagnetic resonance (EPR) analysis and molecular dynamics (MD) simulations suggest the unprecedented dynamic roles of the loop containing the residue G89 (G89 loop) on the active site structure and reaction cycle of starch-active PMOs (AA13 PMOs). In the Cu(II) state, the G89 loop could switch between an "open" and "closed" conformation, which is associated with the binding and dissociation of an aqueous ligand in the distal site, respectively. The conformation of the G89 loop influences the positioning of the copper center on the preferred substrate of AA13 PMOs. The dissociation of the distal ligand results in the bending of the T-shaped core of the Cu(II) active site, which could help facilitate its reduction to the active Cu(I) state. In the Cu(I) state, the G89 loop is in the "closed" conformation with a confined copper center, which could allow for efficient O2 binding. In addition, the G89 loop remains in the "closed" conformation in the Cu(II)-superoxo intermediate, which could prevent off-pathway superoxide release via exchange with the distal aqueous ligand. Finally, at the end of the reaction cycle, aqueous ligand binding to the distal site could switch the G89 loop to the "open" conformation and facilitate product release.


Assuntos
Cobre , Oxigenases de Função Mista , Domínio Catalítico , Cobre/química , Ligantes , Oxigenases de Função Mista/química , Oxigênio/química , Polissacarídeos/química , Amido/química , Amido/metabolismo , Superóxidos
7.
J Phys Chem B ; 124(10): 1859-1865, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31990550

RESUMO

Type 2 copper active sites, one of the several important copper active sites in biology, were recently found in the novel superfamily of polysaccharide monooxygenases (PMOs) that cleave recalcitrant polysaccharides via an unprecedented oxidative mechanism. The copper center in PMOs is ligated by the bidentate N-terminal histidine residue and another conserved histidine residue, forming a unique T-shaped core termed as Histidine brace. This core serves as the foundation for diverse structures and electronic properties among PMO families and subfamilies. Understanding of the copper active site in PMOs is limited to the static solid structures obtained with X-ray diffraction (XRD), whereas in several families, the copper center exists as a mixture of species in solution as indicated by electron paramagnetic resonance (EPR) spectroscopy. To obtain further details on the copper active sites in PMOs, we carried out density functional theory calculations and molecular dynamics simulations on MtPMO3* that were previously studied with XRD, EPR, mutagenesis, and activity assays. The results reveal the fine-tuning of the binding of the distal ligands by both proximal and distal H-bond-forming residues. Q167 forms H bonds with the proximal OTyr ligand of Y167 and the equatorial aqueous ligand (Oeq). T74 forms a H bond with the distal aqueous ligand (Odis). Removing these H bonds by mutating Q167 or T74 to alanine results in great fluctuations of the axial ligands. Strengthening the proximal H bonds by mutating Q167 to glutamate confines Y167 to the copper centers. In all mutants, the residence time of Odis is significantly reduced. Q167A, Q167E, and T74A mutants were previously shown to have a significantly reduced activity. Our results indicate that well-tuned H bonds are required for the activity of PMOs.


Assuntos
Cobre , Oxigenases de Função Mista , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA