Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 76(2): e12936, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39041348

RESUMO

Women typically sleep and wake earlier than men and have been shown to have earlier circadian timing relative to the light/dark cycle that synchronizes the clock. A potential mechanism for earlier timing in women is an altered response of the circadian system to evening light. We characterized individual-level dose-response curves for light-induced melatonin suppression using a within-subjects protocol. Fifty-six participants (29 women, 27 men; aged 18-30 years) were exposed to a range of light illuminances (10, 30, 50, 100, 200, 400, and 2000 lux) using melatonin suppression relative to a dim control (<1 lux) as a marker of light sensitivity. Women were free from hormonal contraception. To examine the potential influence of sex hormones, estradiol and progesterone was examined in women and testosterone was examined in a subset of men. Menstrual phase was monitored using self-reports and estradiol and progesterone levels. Women exhibited significantly greater melatonin suppression than men under the 400-lux and 2000-lux conditions, but not under lower light conditions (10-200 lux). Light sensitivity did not differ by menstrual phase, nor was it associated with levels of estradiol, progesterone, or testosterone, suggesting the sex differences in light sensitivity were not acutely driven by circulating levels of sex hormones. These results suggest that sex differences in circadian timing are not due to differences in the response to dim/moderate light exposures typically experienced in the evening. The finding of increased bright light sensitivity in women suggests that sex differences in circadian timing could plausibly instead be driven by a greater sensitivity to phase-advancing effects of bright morning light.


Assuntos
Ritmo Circadiano , Luz , Melatonina , Humanos , Feminino , Adulto , Ritmo Circadiano/fisiologia , Adolescente , Adulto Jovem , Masculino , Melatonina/metabolismo , Estradiol/sangue , Progesterona/sangue , Progesterona/metabolismo , Testosterona/sangue , Ciclo Menstrual/fisiologia
2.
J Sleep Res ; : e14026, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632717

RESUMO

Sleep disturbances and circadian disruption play a central role in adverse health, safety, and performance outcomes in shift workers. While biomathematical models of sleep and alertness can be used to personalise interventions for shift workers, their practical implementation is undertested. This study tested the feasibility of implementing two biomathematical models-the Phillips-Robinson Model and the Model for Arousal Dynamics-in 28 shift-working nurses, 14 in each group. The study examined the overlap and adherence between model recommendations and sleep behaviours, and changes in sleep following the implementation of recommendations. For both groups combined, the mean (SD) percentage overlap between when a model recommended an individual to sleep and when sleep was obtained was 73.62% (10.24%). Adherence between model recommendations and sleep onset and offset times was significantly higher with the Model of Arousal Dynamics compared to the Phillips-Robinson Model. For the Phillips-Robinson model, 27% of sleep onset and 35% of sleep offset times were within ± 30 min of model recommendations. For the Model of Arousal Dynamics, 49% of sleep onset, and 35% of sleep offset times were within ± 30 min of model recommendations. Compared to pre-study, significant improvements were observed post-study for sleep disturbance (Phillips-Robinson Model), and insomnia severity and sleep-related impairments (Model of Arousal Dynamics). Participants reported that using a digital, automated format for the delivery of sleep recommendations would enable greater uptake. These findings provide a positive proof-of-concept for using biomathematical models to recommend sleep in operational contexts.

3.
Mol Psychiatry ; 26(11): 6305-6316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34099873

RESUMO

Late diurnal preference has been linked to poorer mental health outcomes, but the understanding of the causal role of diurnal preference on mental health and wellbeing is currently limited. Late diurnal preference is often associated with circadian misalignment (a mismatch between the timing of the endogenous circadian system and behavioural rhythms), so that evening people live more frequently against their internal clock. This study aims to quantify the causal contribution of diurnal preference on mental health outcomes, including anxiety, depression and general wellbeing and test the hypothesis that more misaligned individuals have poorer mental health and wellbeing using an actigraphy-based measure of circadian misalignment. Multiple Mendelian Randomisation (MR) approaches were used to test causal pathways between diurnal preference and seven well-validated mental health and wellbeing outcomes in up to 451,025 individuals. In addition, observational analyses tested the association between a novel, objective measure of behavioural misalignment (Composite Phase Deviation, CPD) and seven mental health and wellbeing outcomes. Using genetic instruments identified in the largest GWAS for diurnal preference, we provide robust evidence that early diurnal preference is protective for depression and improves wellbeing. For example, using one-sample MR, a twofold higher genetic liability of morningness was associated with lower odds of depressive symptoms (OR: 0.92, 95% CI: 0.88, 0.97). It is possible that behavioural factors including circadian misalignment may contribute in the chronotype depression relationship, but further work is needed to confirm these findings.


Assuntos
Ritmo Circadiano , Saúde Mental , Ansiedade/genética , Ritmo Circadiano/genética , Humanos , Fatores de Risco , Sono/genética , Inquéritos e Questionários
4.
J Pineal Res ; 72(3): e12791, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133678

RESUMO

The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.


Assuntos
Melatonina , Transtornos do Sono do Ritmo Circadiano , Ritmo Circadiano/fisiologia , Humanos , Melatonina/metabolismo , Sono/fisiologia , Tolerância ao Trabalho Programado/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(24): 12019-12024, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138694

RESUMO

Before the invention of electric lighting, humans were primarily exposed to intense (>300 lux) or dim (<30 lux) environmental light-stimuli at extreme ends of the circadian system's dose-response curve to light. Today, humans spend hours per day exposed to intermediate light intensities (30-300 lux), particularly in the evening. Interindividual differences in sensitivity to evening light in this intensity range could therefore represent a source of vulnerability to circadian disruption by modern lighting. We characterized individual-level dose-response curves to light-induced melatonin suppression using a within-subjects protocol. Fifty-five participants (aged 18-30) were exposed to a dim control (<1 lux) and a range of experimental light levels (10-2,000 lux for 5 h) in the evening. Melatonin suppression was determined for each light level, and the effective dose for 50% suppression (ED50) was computed at individual and group levels. The group-level fitted ED50 was 24.60 lux, indicating that the circadian system is highly sensitive to evening light at typical indoor levels. Light intensities of 10, 30, and 50 lux resulted in later apparent melatonin onsets by 22, 77, and 109 min, respectively. Individual-level ED50 values ranged by over an order of magnitude (6 lux in the most sensitive individual, 350 lux in the least sensitive individual), with a 26% coefficient of variation. These findings demonstrate that the same evening-light environment is registered by the circadian system very differently between individuals. This interindividual variability may be an important factor for determining the circadian clock's role in human health and disease.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Adulto , Feminino , Humanos , Individualidade , Luz , Iluminação/métodos , Masculino , Melatonina/metabolismo , Adulto Jovem
6.
Opt Express ; 29(17): 27612-27627, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615174

RESUMO

Light has many non-visual effects on human physiology, including alterations in sleep, mood, and alertness. These effects are mainly mediated by photoreceptors containing the photopigment melanopsin, which has a peak sensitivity to short wavelength ('blue') light. Commercially available light sensors are commonly wrist-worn and report photopic illuminance and are calibrated to perceive visual brightness and hence cannot be used to investigate the non-visual impacts of light. In this paper, we report the development of a wearable spectrophotometer designed to be worn as a pendant or affixed to clothing to capture spectral power density data close to eye level in the visible wavelength range 380-780 nm. From this, the relative impact of a given light stimulus can be determined for each photoreceptive input in the human eye by calculating effective illuminances. This device showed high accuracy for all effective illuminances while measuring a range of commonly encountered light sources by calibrating for directional response, dark noise, sensor saturation, non-linearity, stray-light and spectral response. Features of the device include IoT-integration, onboard data storage and processing, Bluetooth Low Energy (BLE) enabled data transfer, and cloud storage in one cohesive unit.


Assuntos
Luz , Células Fotorreceptoras de Vertebrados/fisiologia , Espectrofotometria/instrumentação , Dispositivos Eletrônicos Vestíveis , Calibragem , Desenho de Equipamento , Humanos , Luminescência
7.
J Pineal Res ; 71(2): e12757, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34273194

RESUMO

During the COVID-19 pandemic, schools around the world rapidly transitioned from in-person to remote learning, providing an opportunity to examine the impact of in-person vs remote learning on sleep, circadian timing, and mood. We assessed sleep-wake timing using wrist actigraphy and sleep diaries over 1-2 weeks during in-person learning (n = 28) and remote learning (n = 58, where n = 27 were repeat assessments) in adolescents (age M ± SD = 12.79 ± 0.42 years). Circadian timing was measured under a single condition in each individual using salivary melatonin (Dim Light Melatonin Onset; DLMO). Online surveys assessed mood (PROMIS Pediatric Anxiety and Depressive Symptoms) and sleepiness (Epworth Sleepiness Scale - Child and Adolescent) in each condition. During remote (vs in-person) learning: (i) on school days, students went to sleep 26 minutes later and woke 49 minutes later, resulting in 22 minutes longer sleep duration (all P < .0001); (ii) DLMO time did not differ significantly between conditions, although participants woke at a later circadian phase (43 minutes, P = .03) during remote learning; and (iii) participants reported significantly lower sleepiness (P = .048) and lower anxiety symptoms (P = .006). Depressive symptoms did not differ between conditions. Changes in mood symptoms were not mediated by sleep. Although remote learning continued to have fixed school start times, removing morning commutes likely enabled adolescents to sleep longer, wake later, and to wake at a later circadian phase. These results indicate that remote learning, or later school start times, may extend sleep and improve some subjective symptoms in adolescents.


Assuntos
COVID-19 , Melatonina , Adolescente , Criança , Ritmo Circadiano , Humanos , Pandemias , SARS-CoV-2 , Sono
8.
J Pineal Res ; 71(1): e12745, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34050968

RESUMO

The time of dim light melatonin onset (DLMO) is the gold standard for circadian phase assessment in humans, but collection of samples for DLMO is time and resource-intensive. Numerous studies have attempted to estimate circadian phase from actigraphy data, but most of these studies have involved individuals on controlled and stable sleep-wake schedules, with mean errors reported between 0.5 and 1 hour. We found that such algorithms are less successful in estimating DLMO in a population of college students with more irregular schedules: Mean errors in estimating the time of DLMO are approximately 1.5-1.6 hours. We reframed the problem as a classification problem and estimated whether an individual's current phase was before or after DLMO. Using a neural network, we found high classification accuracy of about 90%, which decreased the mean error in DLMO estimation-identifying the time at which the switch in classification occurs-to approximately 1.3 hours. To test whether this classification approach was valid when activity and circadian rhythms are decoupled, we applied the same neural network to data from inpatient forced desynchrony studies in which participants are scheduled to sleep and wake at all circadian phases (rather than their habitual schedules). In participants on forced desynchrony protocols, overall classification accuracy dropped to 55%-65% with a range of 20%-80% for a given day; this accuracy was highly dependent upon the phase angle (ie, time) between DLMO and sleep onset, with the highest accuracy at phase angles associated with nighttime sleep. Circadian patterns in activity, therefore, should be included when developing and testing actigraphy-based approaches to circadian phase estimation. Our novel algorithm may be a promising approach for estimating the onset of melatonin in some conditions and could be generalized to other hormones.


Assuntos
Actigrafia/métodos , Ritmo Circadiano/fisiologia , Melatonina/biossíntese , Redes Neurais de Computação , Fotometria/métodos , Adulto , Feminino , Humanos , Masculino
9.
J Physiol ; 596(24): 6249-6261, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30281150

RESUMO

KEY POINTS: This is the first study to demonstrate an altered circadian phase shifting response in a circadian rhythm sleep disorder. Patients with delayed sleep-wake phase disorder (DSWPD) demonstrate greater sensitivity of the circadian system to the phase-delaying effects of light. Increased circadian sensitivity to light is associated with later circadian timing within both control and DSWPD groups. DSWPD patients had a greater sustained pupil response after light exposure. Treatments for DSWPD should consider sensitivity of the circadian system to light as a potential underlying vulnerability, making patients susceptible to relapse. ABSTRACT: Patients with delayed sleep-wake phase disorder (DSWPD) exhibit delayed sleep-wake behaviour relative to desired bedtime, often leading to chronic sleep restriction and daytime dysfunction. The majority of DSWPD patients also display delayed circadian timing in the melatonin rhythm. Hypersensitivity of the circadian system to phase-delaying light is a plausible physiological basis for DSWPD vulnerability. We compared the phase shifting response to a 6.5 h light exposure (∼150 lux) between male patients with diagnosed DSWPD (n = 10; aged 20.8 ± 2.3 years) and male healthy controls (n = 11; aged 22.4 ± 3.3 years). Salivary dim light melatonin onset (DLMO) was measured under controlled conditions in dim light (<3 lux) before and after light exposure. Correcting for the circadian time of the light exposure, DSWPD patients exhibited 31.5% greater phase delay shifts than healthy controls. In both groups, a later initial melatonin phase was associated with a greater magnitude phase shift, indicating that increased circadian sensitivity to light may be a factor that contributes to delayed phase, even in non-clinical groups. DSWPD patients also had reduced pupil size following the light exposure, and showed a trend towards increased melatonin suppression during light exposure. These findings indicate that, for patients with DSWPD, assessment of light sensitivity may be an important factor that can inform behavioural therapy, including minimization of exposure to phase-delaying night-time light.


Assuntos
Ritmo Circadiano , Transtornos do Sono do Ritmo Circadiano , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Melatonina/metabolismo , Adulto Jovem
10.
PLoS Comput Biol ; 13(10): e1005759, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29073206

RESUMO

Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model's ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules.


Assuntos
Adenosina/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Cognição , Modelos Neurológicos , Privação do Sono/fisiopatologia , Sono , Atenção , Transtornos Cognitivos/etiologia , Simulação por Computador , Humanos , Desempenho Psicomotor , Tempo de Reação , Recuperação de Função Fisiológica , Privação do Sono/complicações
12.
Proc Natl Acad Sci U S A ; 108 Suppl 3: 15602-8, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21536890

RESUMO

The circadian rhythms of melatonin and body temperature are set to an earlier hour in women than in men, even when the women and men maintain nearly identical and consistent bedtimes and wake times. Moreover, women tend to wake up earlier than men and exhibit a greater preference for morning activities than men. Although the neurobiological mechanism underlying this sex difference in circadian alignment is unknown, multiple studies in nonhuman animals have demonstrated a sex difference in circadian period that could account for such a difference in circadian alignment between women and men. Whether a sex difference in intrinsic circadian period in humans underlies the difference in circadian alignment between men and women is unknown. We analyzed precise estimates of intrinsic circadian period collected from 157 individuals (52 women, 105 men; aged 18-74 y) studied in a month-long inpatient protocol designed to minimize confounding influences on circadian period estimation. Overall, the average intrinsic period of the melatonin and temperature rhythms in this population was very close to 24 h [24.15 ± 0.2 h (24 h 9 min ± 12 min)]. We further found that the intrinsic circadian period was significantly shorter in women [24.09 ± 0.2 h (24 h 5 min ± 12 min)] than in men [24.19 ± 0.2 h (24 h 11 min ± 12 min); P < 0.01] and that a significantly greater proportion of women have intrinsic circadian periods shorter than 24.0 h (35% vs. 14%; P < 0.01). The shorter average intrinsic circadian period observed in women may have implications for understanding sex differences in habitual sleep duration and insomnia prevalence.


Assuntos
Relógios Circadianos/fisiologia , Caracteres Sexuais , Adolescente , Adulto , Idoso , Envelhecimento/fisiologia , Temperatura Corporal/fisiologia , Feminino , Humanos , Masculino , Melatonina/metabolismo , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
13.
Clocks Sleep ; 6(1): 114-128, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534797

RESUMO

In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.

14.
Sleep ; 47(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738616

RESUMO

Abnormally short and long sleep are associated with premature mortality, and achieving optimal sleep duration has been the focus of sleep health guidelines. Emerging research demonstrates that sleep regularity, the day-to-day consistency of sleep-wake timing, can be a stronger predictor for some health outcomes than sleep duration. The role of sleep regularity in mortality, however, has not been investigated in a large cohort with objective data. We therefore aimed to compare how sleep regularity and duration predicted risk for all-cause and cause-specific mortality. We calculated Sleep Regularity Index (SRI) scores from > 10 million hours of accelerometer data in 60 977 UK Biobank participants (62.8 ±â€…7.8 years, 55.0% female, median[IQR] SRI: 81.0[73.8-86.3]). Mortality was reported up to 7.8 years after accelerometer recording in 1859 participants (4.84 deaths per 1000 person-years, mean (±SD) follow-up of 6.30 ±â€…0.83 years). Higher sleep regularity was associated with a 20%-48% lower risk of all-cause mortality (p < .001 to p = 0.004), a 16%-39% lower risk of cancer mortality (p < 0.001 to p = 0.017), and a 22%-57% lower risk of cardiometabolic mortality (p < 0.001 to p = 0.048), across the top four SRI quintiles compared to the least regular quintile. Results were adjusted for age, sex, ethnicity, and sociodemographic, lifestyle, and health factors. Sleep regularity was a stronger predictor of all-cause mortality than sleep duration, by comparing equivalent mortality models, and by comparing nested SRI-mortality models with and without sleep duration (p = 0.14-0.20). These findings indicate that sleep regularity is an important predictor of mortality risk and is a stronger predictor than sleep duration. Sleep regularity may be a simple, effective target for improving general health and survival.


Assuntos
Estilo de Vida , Sono , Humanos , Feminino , Masculino , Estudos Prospectivos , Actigrafia , Fatores de Tempo
15.
Sleep Health ; 10(1S): S25-S33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007304

RESUMO

OBJECTIVES: Mathematical models of human neurobehavioral performance that include the effects of acute and chronic sleep restriction can be key tools in assessment and comparison of work schedules, allowing quantitative predictions of performance when empirical assessment is impractical. METHODS: Using such a model, we tested the hypothesis that resident physicians working an extended duration work roster, including 24-28 hours of continuous duty and up to 88 hours per week averaged over 4weeks, would have worse predicted performance than resident physicians working a rapidly cycling work roster intervention designed to reduce the duration of extended shifts. The performance metric used was attentional failures (ie, Psychomotor Vigilance Task lapses). Model input was 169 actual work and sleep schedules. Outcomes were predicted hours per week during work hours spent at moderate (equivalent to 16-20 hours of continuous wakefulness) or high (equivalent to ≥20 hours of continuous wakefulness) performance impairment. RESULTS: The model predicted that resident physicians working an extended duration work roster would spend significantly more time at moderate impairment (p = .02, effect size=0.2) than those working a rapidly cycling work roster; this difference was most pronounced during the circadian night (p < .001). On both schedules, performance was predicted to decline from weeks 1 + 2 to weeks 3 + 4 (p < .001), but the rate of decline was significantly greater on extended duration work roster (p < .01). Predicted performance impairment was inversely related to prior sleep duration (p < .001). CONCLUSIONS: These findings demonstrate the utility of a mathematical model to evaluate the predicted performance profile of schedules for resident physicians and others who experience chronic sleep restriction and circadian misalignment.

16.
Sci Rep ; 14(1): 16796, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039133

RESUMO

Robust circadian rhythms are essential for optimal health. The central circadian clock controls temperature rhythms, which are known to organize the timing of peripheral circadian rhythms in rodents. In humans, however, it is unknown whether temperature rhythms relate to the organization of circadian rhythms throughout the body. We assessed core body temperature amplitude and the rhythmicity of 929 blood plasma metabolites across a 40-h constant routine protocol, controlling for behavioral and environmental factors that mask endogenous temperature rhythms, in 23 healthy individuals (mean [± SD] age = 25.4 ± 5.7 years, 5 women). Valid core body temperature data were available in 17/23 (mean [± SD] age = 25.6 ± 6.3 years, 1 woman). Individuals with higher core body temperature amplitude had a greater number of metabolites exhibiting circadian rhythms (R2 = 0.37, p = .009). Higher core body temperature amplitude was also associated with less variability in the free-fitted periods of metabolite rhythms within an individual (R2 = 0.47, p = .002). These findings indicate that a more robust central circadian clock is associated with greater organization of circadian metabolite rhythms in humans. Metabolite rhythms may therefore provide a window into the strength of the central circadian clock.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Humanos , Feminino , Ritmo Circadiano/fisiologia , Masculino , Adulto , Adulto Jovem , Relógios Circadianos/fisiologia , Temperatura , Metaboloma
17.
Sci Adv ; 10(10): eadj6834, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457492

RESUMO

Sleep deprivation enhances risk for serious injury and fatality on the roads and in workplaces. To facilitate future management of these risks through advanced detection, we developed and validated a metabolomic biomarker of sleep deprivation in healthy, young participants, across three experiments. Bi-hourly plasma samples from 2 × 40-hour extended wake protocols (for train/test models) and 1 × 40-hour protocol with an 8-hour overnight sleep interval were analyzed by untargeted liquid chromatography-mass spectrometry. Using a knowledge-based machine learning approach, five consistently important variables were used to build predictive models. Sleep deprivation (24 to 38 hours awake) was predicted accurately in classification models [versus well-rested (0 to 16 hours)] (accuracy = 94.7%/AUC 99.2%, 79.3%/AUC 89.1%) and to a lesser extent in regression (R2 = 86.1 and 47.8%) models for within- and between-participant models, respectively. Metabolites were identified for replicability/future deployment. This approach for detecting acute sleep deprivation offers potential to reduce accidents through "fitness for duty" or "post-accident analysis" assessments.


Assuntos
Privação do Sono , Sono , Humanos , Privação do Sono/metabolismo , Vigília , Metabolômica , Aprendizado de Máquina
18.
medRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352337

RESUMO

Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, and together may provide a more complete picture of sleep health, while also illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p<8.3e-9), along with 341 previously reported loci (p<5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2=0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections to behavioral, psychological, and cardiometabolic traits.

19.
BMJ Open ; 13(10): e075107, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793926

RESUMO

INTRODUCTION: The objective of this study is to determine the effects of night work, Arctic seasonal factors and cold working environments on human functions relevant to safety. The study aims to quantify the contribution of (1) several consecutive night shifts, (2) seasonal variation on sleepiness, alertness and circadian rhythm and (3) whether a computational model of sleep, circadian rhythms and cognitive performance can accurately predict the observed sleepiness and alertness. METHODS AND ANALYSIS: In an observational crossover study of outdoor and indoor workers (n=120) on a three-shift schedule from an industrial plant in Norway (70 °N), measurements will be conducted during the summer and winter. Sleep duration and quality will be measured daily by smartphone questionnaire, aided by actigraphy and heart rate measurements. Sleepiness and alertness will be assessed at regular intervals by the Karolinska Sleepiness Scale and the psychomotor vigilance test, respectively. Saliva samples will assess melatonin levels, and a blood sample will measure circadian time. Thermal exposures and responses will be measured by sensors and by thermography. ETHICS AND DISSEMINATION: All participants will give written informed consent to participate in the study, which will be conducted in accordance with the Declaration of Helsinki. The Norwegian Regional Committee for Medical Research Ethics South-East D waivered the need for ethics approval (reference 495816). Dissemination plans include academic and lay publications, and partnerships with national and regional policymakers.


Assuntos
Saúde Ocupacional , Humanos , Ritmo Circadiano/fisiologia , Estudos Cross-Over , Estações do Ano , Sono/fisiologia , Sonolência , Tolerância ao Trabalho Programado/fisiologia , Estudos Observacionais como Assunto
20.
Obesity (Silver Spring) ; 31 Suppl 1: 50-56, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35765855

RESUMO

OBJECTIVE: Later circadian timing of energy intake is associated with higher body fat percentage. Current methods for obtaining accurate circadian timing are labor- and cost-intensive, limiting practical application of this relationship. This study investigated whether the timing of energy intake relative to a mathematically modeled circadian time, derived from easily collected ambulatory data, would differ between participants with a lean or overweight/obesity body fat percentage. METHODS: Participants (N = 87) wore a light- and activity-measuring device (actigraph) throughout a cross-sectional 30-day study. For 7 consecutive days within these 30 days, participants used a time-stamped-picture phone application to record energy intake. Body fat percentage was recorded. Circadian time was defined using melatonin onset from in-laboratory collected repeat saliva sampling or using light and activity or activity data alone entered into a mathematical model. RESULTS: Participants with overweight/obesity body fat percentages ate 50% of their daily calories significantly closer to model-predicted melatonin onset from light and activity data (0.61 hours closer) or activity data alone (0.86 hours closer; both log-rank p < 0.05). CONCLUSIONS: Use of mathematically modeled circadian timing resulted in similar relationships between the timing of energy intake and body composition as that observed using in-laboratory collected metrics. These findings may facilitate use of circadian timing in time-based interventions.


Assuntos
Melatonina , Sono , Humanos , Sobrepeso , Ritmo Circadiano , Estudos Transversais , Ingestão de Energia , Obesidade , Tecido Adiposo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA