Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730852

RESUMO

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Assuntos
Células/metabolismo , Metabolismo Energético , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células/efeitos da radiação , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusão , Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Meio Ambiente , Ligação de Hidrogênio , Cinética , Luz , Simulação de Dinâmica Molecular , Fenótipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Eletricidade Estática , Estresse Fisiológico/efeitos da radiação , Temperatura
2.
J Chem Inf Model ; 64(2): 543-554, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38176097

RESUMO

All-atom molecular dynamics (MD) simulations are an essential structural biology technique with increasing application to multimillion-atom systems, including viruses and cellular machinery. Classical MD simulations rely on parameter sets, such as the AMBER family of force fields (AMBERff), to accurately describe molecular motion. Here, we present an implementation of AMBERff for use in NAMD that overcomes previous limitations to enable high-performance, massively parallel simulations encompassing up to two billion atoms. Single-point potential energy comparisons and case studies on model systems demonstrate that the implementation produces results that are as accurate as running AMBERff in its native engine.

3.
Nature ; 541(7638): 554-557, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28077875

RESUMO

Quality control mechanisms intervene appropriately when defective translation events occur, in order to preserve the integrity of protein synthesis. Rescue of ribosomes translating on messenger RNAs that lack stop codons is one of the co-translational quality control pathways. In many bacteria, ArfA recognizes stalled ribosomes and recruits the release factor RF2, which catalyses the termination of protein synthesis. Although an induced-fit mechanism of nonstop mRNA surveillance mediated by ArfA and RF2 has been reported, the molecular interaction between ArfA and RF2 in the ribosome that is responsible for the mechanism is unknown. Here we report an electron cryo-microscopy structure of ArfA and RF2 in complex with the 70S ribosome bound to a nonstop mRNA. The structure, which is consistent with our kinetic and biochemical data, reveals the molecular interactions that enable ArfA to specifically recruit RF2, not RF1, into the ribosome and to enable RF2 to release the truncated protein product in this co-translational quality control pathway. The positively charged C-terminal domain of ArfA anchors in the mRNA entry channel of the ribosome. Furthermore, binding of ArfA and RF2 induces conformational changes in the ribosomal decoding centre that are similar to those seen in other protein-involved decoding processes. Specific interactions between residues in the N-terminal domain of ArfA and RF2 help RF2 to adopt a catalytically competent conformation for peptide release. Our findings provide a framework for understanding recognition of the translational state of the ribosome by new proteins, and expand our knowledge of the decoding potential of the ribosome.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Biocatálise , Códon de Terminação , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Fatores de Terminação de Peptídeos/ultraestrutura , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura
4.
Nat Methods ; 15(5): 351-354, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578535

RESUMO

Hybrid methods that combine quantum mechanics (QM) and molecular mechanics (MM) can be applied to studies of reaction mechanisms in locations ranging from active sites of small enzymes to multiple sites in large bioenergetic complexes. By combining the widely used molecular dynamics and visualization programs NAMD and VMD with the quantum chemistry packages ORCA and MOPAC, we created an integrated, comprehensive, customizable, and easy-to-use suite (http://www.ks.uiuc.edu/Research/qmmm). Through the QwikMD interface, setup, execution, visualization, and analysis are streamlined for all levels of expertise.


Assuntos
Simulação por Computador , Modelos Biológicos , Modelos Químicos , Teoria Quântica , Software , Simulação de Dinâmica Molecular , Eletricidade Estática
5.
Int J High Perform Comput Appl ; 35(5): 432-451, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38603008

RESUMO

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.

6.
J Chem Phys ; 153(4): 044130, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752662

RESUMO

NAMDis a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.

7.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926941

RESUMO

Ubiquitin, discovered less than 50 years ago, tags thousands of diseased proteins for destruction. It is small (only 76 amino acids), and is found unchanged in mammals, birds, fish, and even worms, indicating that ubiquitin is perfect. Key features of its functionality are identified here using critical point thermodynamic scaling theory. These include synchronized pivots and hinges, a stabilizing central pivot, and Fano interference between first- and second-order elements of correlated long-range (allosteric) globular surface shape transitions. Comparison with its closest relative, 76 amino acid Nedd8, shows that the latter lacks all these features. A cracked elastic network model is proposed for the common target shared by many diseased proteins.


Assuntos
Evolução Molecular , Modelos Teóricos , Ubiquitinas/química , Regulação Alostérica , Animais , Humanos , Estabilidade Proteica , Termodinâmica , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
Parallel Comput ; 55: 17-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27274603

RESUMO

The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.

9.
Comput Phys Commun ; 185(3): 908-916, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24944348

RESUMO

Computational methodologies that couple the dynamical evolution of a set of replicated copies of a system of interest offer powerful and flexible approaches to characterize complex molecular processes. Such multiple copy algorithms (MCAs) can be used to enhance sampling, compute reversible work and free energies, as well as refine transition pathways. Widely used examples of MCAs include temperature and Hamiltonian-tempering replica-exchange molecular dynamics (T-REMD and H-REMD), alchemical free energy perturbation with lambda replica-exchange (FEP/λ-REMD), umbrella sampling with Hamiltonian replica exchange (US/H-REMD), and string method with swarms-of-trajectories conformational transition pathways. Here, we report a robust and general implementation of MCAs for molecular dynamics (MD) simulations in the highly scalable program NAMD built upon the parallel programming system Charm++. Multiple concurrent NAMD instances are launched with internal partitions of Charm++ and located continuously within a single communication world. Messages between NAMD instances are passed by low-level point-to-point communication functions, which are accessible through NAMD's Tcl scripting interface. The communication-enabled Tcl scripting provides a sustainable application interface for end users to realize generalized MCAs without modifying the source code. Illustrative applications of MCAs with fine-grained inter-copy communication structure, including global lambda exchange in FEP/λ-REMD, window swapping US/H-REMD in multidimensional order parameter space, and string method with swarms-of-trajectories were carried out on IBM Blue Gene/Q to demonstrate the versatility and massive scalability of the present implementation.

10.
Proc Natl Acad Sci U S A ; 105(27): 9233-7, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18591657

RESUMO

Protein-protein interactions (protein functionalities) are mediated by water, which compacts individual proteins and promotes close and temporarily stable large-area protein-protein interfaces. In their classic article, Kyte and Doolittle (KD) concluded that the "simplicity and graphic nature of hydrophobicity scales make them very useful tools for the evaluation of protein structures." In practice, however, attempts to develop hydrophobicity scales (for example, compatible with classical force fields (CFF) in calculating the energetics of protein folding) have encountered many difficulties. Here, we suggest an entirely different approach based on the idea that proteins are self-organized networks, subject to evolving finite-scale criticality (like some network glasses). We test this proposal against two small proteins that are delicately balanced between alpha and alpha/beta structures, with different functions encoded with only 12% of their amino acids. This example explains why protein structure prediction is so challenging, and it provides a severe test for the accuracy and content of hydrophobicity scales. This method confirms KD's evaluation and at the same time suggests that protein structure, dynamics, and function can be best discussed without using CFF.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteínas/química , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Termodinâmica
11.
Health Commun ; 26(6): 512-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21469003

RESUMO

Media effects research provides evidence for a link between adolescent exposure to media portrayals of substance use and usage. Exposure to media content that glamorizes and normalizes substance use carries potential public health risks. Though substance use has been examined in other media, such as film, television, and magazines, no research to date examines usage portrayals in adolescent novels. Given that adolescents do read, and given the potential impact of content on adolescent attitudes and behavior, this study provides a detailed analysis of the frequency and nature of substance use in the understudied area of novels. Substance use was examined in 40 best-selling adolescent novels on the New York Times Best Sellers list (time span June-July 2008). Substance use varied widely. Of the various types of substances, alcohol portrayals were most common. Almost all substance use was portrayed as having no consequences. Alcohol use was portrayed in similar frequencies in books aimed at younger, middle, and older adolescents, though illegal drug use was more likely to be found in books aimed at older ages. Our results suggest that the manner in which substance use is generally portrayed may encourage use among adolescents. Researchers, parents, and adolescents are encouraged to examine books as one potentially overlooked area of influence.


Assuntos
Comportamento do Adolescente/psicologia , Bibliometria , Comportamento Infantil/psicologia , Literatura , Transtornos Relacionados ao Uso de Substâncias/psicologia , Adolescente , Atitude Frente a Saúde , Livros , Criança , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Jornais como Assunto
12.
F1000Res ; 9: 1192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214878

RESUMO

Background: Software is now ubiquitous within research. In addition to the general challenges common to all software development projects, research software must also represent, manipulate, and provide data for complex theoretical constructs. Ensuring this process of theory-software translation is robust is essential to maintaining the integrity of the science resulting from it, and yet there has been little formal recognition or exploration of the challenges associated with it. Methods: We thematically analyse the outputs of the discussion sessions at the Theory-Software Translation Workshop 2019, where academic researchers and research software engineers from a variety of domains, and with particular expertise in high performance computing, explored the process of translating between scientific theory and software. Results: We identify a wide range of challenges to implementing scientific theory in research software and using the resulting data and models for the advancement of knowledge. We categorise these within the emergent themes of design, infrastructure, and culture, and map them to associated research questions. Conclusions: Systematically investigating how software is constructed and its outputs used within science has the potential to improve the robustness of research software and accelerate progress in its development. We propose that this issue be examined within a new research area of theory-software translation, which would aim to significantly advance both knowledge and scientific practice.


Assuntos
Metodologias Computacionais , Software , Engenharia , Humanos , Conhecimento , Pesquisadores
13.
bioRxiv ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33236007

RESUMO

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.

14.
ACS Chem Neurosci ; 10(6): 2843-2847, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31042351

RESUMO

Amyloid precursor A4 (770 amino acids (aa)) dimerizes and aggregates, as do its C-terminal (99 aa) and amyloid Aß (40,42 aa Aß40,Aß42) fragments. The titled question has been discussed extensively, and here it is addressed further using thermodynamic scaling theory to analyze mutational trends in structural factors and kinetics. Special attention is given to Family Alzheimer's disease mutations in C99 outside Aß42 centered on Aß46. The scaling analysis is connected to extensive C99 docking simulations which included membranes ( Sun et al. J. Chem. Inf. Model. 2017 , 57 , 1375 - 1387 ), thereby confirming their C99 results and extending them to A4.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Sequência de Aminoácidos , Humanos , Mutação
15.
ACS Appl Mater Interfaces ; 9(37): 32377-32385, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28870068

RESUMO

Despite the crucial role of concrete in the construction of nuclear power plants, the effects of radiation exposure (i.e., in the form of neutrons) on the calcium-silicate-hydrate (C-S-H, i.e., the glue of concrete) remain largely unknown. Using molecular dynamics simulations, we systematically investigate the effects of irradiation on the structure of C-S-H across a range of compositions. Expectedly, although C-S-H is more resistant to irradiation than typical crystalline silicates, such as quartz, we observe that radiation exposure affects C-S-H's structural order, silicate mean chain length, and the amount of molecular water that is present in the atomic network. By topological analysis, we show that these "structural effects" arise from a self-organization of the atomic network of C-S-H upon irradiation. This topological self-organization is driven by the (initial) presence of atomic eigenstress in the C-S-H network and is facilitated by the presence of water in the network. Overall, we show that C-S-H exhibits an optimal resistance to radiation damage when its atomic network is isostatic (at Ca/Si = 1.5). Such an improved understanding of the response of C-S-H to irradiation can pave the way to the design of durable concrete for radiation applications.

16.
J Chem Theory Comput ; 13(12): 5933-5944, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29111720

RESUMO

An increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementation of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Concentração de Íons de Hidrogênio , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Método de Monte Carlo , Proteínas/metabolismo , Solventes/química , Termodinâmica
17.
High Perform Comput (2016) ; 9945: 188-206, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29202130

RESUMO

All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms.

18.
Artigo em Inglês | MEDLINE | ID: mdl-27516922

RESUMO

Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

19.
Sci Rep ; 6: 26536, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216779

RESUMO

The proper functioning of biomolecules in living cells requires them to assume particular structures and to undergo conformational changes. Both biomolecular structure and motion can be studied using a wide variety of techniques, but none offers the level of detail as do molecular dynamics (MD) simulations. Integrating two widely used modeling programs, namely NAMD and VMD, we have created a robust, user-friendly software, QwikMD, which enables novices and experts alike to address biomedically relevant questions, where often only molecular dynamics simulations can provide answers. Performing both simple and advanced MD simulations interactively, QwikMD automates as many steps as necessary for preparing, carrying out, and analyzing simulations while checking for common errors and enabling reproducibility. QwikMD meets also the needs of experts in the field, increasing the efficiency and quality of their work by carrying out tedious or repetitive tasks while enabling easy control of every step. Whether carrying out simulations within the live view mode on a small laptop or performing complex and large simulations on supercomputers or Cloud computers, QwikMD uses the same steps and user interface. QwikMD is freely available by download on group and personal computers. It is also available on the cloud at Amazon Web Services.

20.
J Chem Theory Comput ; 11(2): 766-79, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25691833

RESUMO

The multilevel summation method (MSM) offers an efficient algorithm utilizing convolution for evaluating long-range forces arising in molecular dynamics simulations. Shifting the balance of computation and communication, MSM provides key advantages over the ubiquitous particle­mesh Ewald (PME) method, offering better scaling on parallel computers and permitting more modeling flexibility, with support for periodic systems as does PME but also for semiperiodic and nonperiodic systems. The version of MSM available in the simulation program NAMD is described, and its performance and accuracy are compared with the PME method. The accuracy feasible for MSM in practical applications reproduces PME results for water property calculations of density, diffusion constant, dielectric constant, surface tension, radial distribution function, and distance-dependent Kirkwood factor, even though the numerical accuracy of PME is higher than that of MSM. Excellent agreement between MSM and PME is found also for interface potentials of air­water and membrane­water interfaces, where long-range Coulombic interactions are crucial. Applications demonstrate also the suitability of MSM for systems with semiperiodic and nonperiodic boundaries. For this purpose, simulations have been performed with periodic boundaries along directions parallel to a membrane surface but not along the surface normal, yielding membrane pore formation induced by an imbalance of charge across the membrane. Using a similar semiperiodic boundary condition, ion conduction through a graphene nanopore driven by an ion gradient has been simulated. Furthermore, proteins have been simulated inside a single spherical water droplet. Finally, parallel scalability results show the ability of MSM to outperform PME when scaling a system of modest size (less than 100 K atoms) to over a thousand processors, demonstrating the suitability of MSM for large-scale parallel simulation.


Assuntos
Membrana Celular/química , Simulação de Dinâmica Molecular , Eletricidade Estática , Água/química , Ar , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA