Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 32(11): 1959-69, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20955471

RESUMO

Stereo '3D' vision depends on correctly matching up the differing images of objects seen by our two eyes. But vertical disparity between the retinal images changes with binocular eye posture, reflecting for example the different convergence angles required for different viewing distances. Thus, stereo correspondence must either dynamically adapt to take account of changes in viewing distance, or be hard-wired to perform best at one particular viewing distance. Here, using psychophysical experiments, we show for the first time that human stereo correspondence does not adapt to changes in physical viewing distance. We examine performance on a stereo correspondence task at a short viewing distance (30 cm) and show that performance is improved when we simulate the disparity pattern for viewing infinity, even though these disparities are impossible at the physical viewing distance. We estimate the vertical extent of the retinally fixed 'search zones' as < 0.6° at 14° eccentricity, suggesting that most V1 neurons must be tuned to near-zero vertical disparity. We also show that performance on our stereo task at 14° eccentricity is affected by the pattern of vertical disparity beyond 20° eccentricity, even though this is irrelevant to the task. Performance is best when vertical disparities within and beyond 20° eccentricity both indicate the same convergence angle (even if not the physical angle), than when the pattern of vertical disparity across the visual field is globally inconsistent with any single convergence angle. This novel effect of the periphery may indicate cooperative interactions between disparity-selective neurons activated by the same eye postures.


Assuntos
Percepção de Profundidade/fisiologia , Visão Binocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Disparidade Visual , Campos Visuais , Adulto Jovem
2.
J Vis ; 10(3): 2.1-25, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20377279

RESUMO

Because our eyes are set apart horizontally in our head, most disparities between the retinal images are horizontal. However, vertical disparities also occur, and can influence depth perception. The classic example is Ogle's induced effect (K. N. Ogle, 1938), in which applying a uniform vertical magnification to one eye's image produces the illusion that the surface has been rotated around a vertical axis. This is thought to be because uniform vertical magnifications can be produced in natural viewing when the eyes are in eccentric gaze (J. E. Mayhew, 1982; J. E. Mayhew & H. C. Longuet-Higgins, 1982). Thus, vertical magnification is taken by the visual system as indicating that the viewed surface is slanted away from the line of sight. Here, we demonstrate that the induced effect becomes stronger when the sign of the magnification alternates across the visual field. That is, as one moves horizontally across the screen, the left eye's image is alternately stretched and squashed vertically relative to the right eye's image, producing the illusion of a surface folded into triangular corrugations (H. Kaneko & I. P. Howard, 1997). For most subjects, slant judgments in this folded surface have lower thresholds and greater reliability than the classic induced effect, where magnification is applied uniformly across the whole visual field. This is remarkable, given that the disparity pattern of the classic induced effect can be produced by real surfaces with the eyes in eccentric gaze, whereas it is not clear that stripes of alternating vertical disparity could be produced by any physically realizable situation. The analogous improvement for alternating horizontal magnification is attributed to neuronal mechanisms which detect the jumps in horizontal disparity that occur at object boundaries. Our results suggest that a similar, previously unreported system may exist for vertical disparity. Jumps in vertical disparity do occur at object boundaries, and we suggest that our surprising results may reflect the activation of neuronal mechanisms designed to detect these.


Assuntos
Percepção de Profundidade/fisiologia , Modelos Neurológicos , Disparidade Visual/fisiologia , Adolescente , Adulto , Artefatos , Discriminação Psicológica/fisiologia , Feminino , Humanos , Masculino , Distribuição Normal , Estimulação Luminosa/métodos , Psicometria , Adulto Jovem
3.
J Vis ; 9(13): 11.1-37, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20055544

RESUMO

The literature on vertical disparity is complicated by the fact that several different definitions of the term "vertical disparity" are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position-gaze direction, convergence, torsion, cyclovergence, and vertical misalignment-can be derived from the vertical disparity field and its derivatives at the fovea.


Assuntos
Percepção de Profundidade/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Convergência Ocular/fisiologia , Humanos , Estimulação Luminosa
4.
PLoS One ; 5(9): e12608, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20830303

RESUMO

Both dorsal and ventral cortical visual streams contain neurons sensitive to binocular disparities, but the two streams may underlie different aspects of stereoscopic vision. Here we investigate stereopsis in the neurological patient D.F., whose ventral stream, specifically lateral occipital cortex, has been damaged bilaterally, causing profound visual form agnosia. Despite her severe damage to cortical visual areas, we report that DF's stereo vision is strikingly unimpaired. She is better than many control observers at using binocular disparity to judge whether an isolated object appears near or far, and to resolve ambiguous structure-from-motion. DF is, however, poor at using relative disparity between features at different locations across the visual field. This may stem from a difficulty in identifying the surface boundaries where relative disparity is available. We suggest that the ventral processing stream may play a critical role in enabling healthy observers to extract fine depth information from relative disparities within one surface or between surfaces located in different parts of the visual field.


Assuntos
Agnosia/psicologia , Percepção de Profundidade , Córtex Visual/fisiopatologia , Adulto , Idoso de 80 Anos ou mais , Agnosia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Disparidade Visual , Córtex Visual/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA