Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013720

RESUMO

Rhenium is an element that exhibits a broad range of oxidation states. Synthesis paths of selected rhenium compounds in its seventh oxidation state, which are common precursors for organic reaction catalysts, were presented in this paper. Production technologies for copper perrhenate, aluminum perrhenate as well as the ammonia complex of cobalt perrhenate, are thoroughly described. An ion exchange method, based on Al or Cu metal ion sorption and subsequent elution by aqueous perrhenic acid solutions, was used to obtain perrhenates. The produced solutions were neutralized to afford the targeted aluminum perrhenate and copper perrhenate products in high purity. The developed technologies allow one to manage the wastes from the production of these perrhenates as most streams were recycled. Hexaamminecobalt(III) perrhenate was produced by a newly developed method enabling us to produce a high purity compound in a reaction of spent hexaamminecobalt(III) chloride solution with a perrhenic acid. All prepared compounds are the basis for precursor preparation in organic catalysis.


Assuntos
Alumínio/química , Complexos de Coordenação , Cobre/química , Rênio/química , Catálise , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Oxirredução
2.
ChemSusChem ; 15(15): e202200718, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35608798

RESUMO

Breaking down lignin into smaller units is the key to generate high value-added products. Nevertheless, dissolving this complex plant polyphenol in an environment-friendly way is often a challenge. Levulinic acid, which is formed during the hydrothermal processing of lignocellulosic biomass, has been shown to efficiently dissolve lignin. Herein, levulinic acid was evaluated as a medium for the reductive electrochemical depolymerization of the lignin macromolecule. Copper was chosen as the electrocatalyst due to the economic feasibility and low activity towards the hydrogen evolution reaction. After depolymerization, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy revealed lignin-derived monomers and dimers. A predominance of aryl ether and phenolic groups was observed. Depolymerized lignin was further evaluated as an anti-corrosion coating, revealing enhancements on the electrochemical stability of the metal. Via a simple depolymerization process of biomass waste in a biomass-based solvent, a straightforward approach to produce high value-added compounds or tailored biobased materials was demonstrated.


Assuntos
Hidrogênio , Lignina , Biomassa , Lignina/química , Polimerização , Solventes/química
3.
ChemSusChem ; 15(15): e202201246, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35856736

RESUMO

Invited for this month's cover is the group of Adam Slabon at the University of Wuppertal. The image illustrates the reductive depolymerization of lignin into monomers using copper as electrocatalyst. The Research Article itself is available at 10.1002/cssc.202200718.


Assuntos
Cobre , Lignina , Biomassa , Solventes
4.
ACS Omega ; 5(19): 10847-10856, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455205

RESUMO

Efficient and sustainable recycling of cobalt(II) is of increasing importance to support technological development in energy storage and electric vehicle industries. A composite material based on membrane-filtered lignin deposited on nanoporous silica microparticles was found to be an effective and sustainable sorbent for cobalt(II) removal. This bio-based sorbent exhibited a high sorption capacity, fast kinetics toward cobalt(II) adsorption, and good reusability. The adsorption capacity was 18 mg Co(II) per gram of dry adsorbent at room temperature (22 °C) at near-neutral pH, three times higher than that of the summarized capacity of lignin or silica starting materials. The kinetics study showed that 90 min is sufficient for effective cobalt(II) extraction by the composite sorbent. The pseudo-second-order kinetics and Freundlich isotherm models fitted well with experimentally obtained data and confirmed heterogeneity of adsorption sites. The promising potential of the lignin-silica composites for industrial applications in the cobalt recovering process was confirmed by high values of desorption in mildly acidic solutions.

5.
Chem Commun (Camb) ; 56(86): 13193-13196, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33021615

RESUMO

Conformal atomic layer deposition (ALD) technique is employed to make semi-transparent TaOxNy, providing the possibility to build semi-transparent oxy(nitride) heterojunction photoanodes on conductive substrates. A generalized approach was developed to manufacture semi-transparent quaternary metal oxynitrides on conductive substrates beyond semi-transparent binary Ta3N5 photoanodes aiming for wireless tandem photoelectrochemical (PEC) cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA