Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502059

RESUMO

Siphonophores (Cnidaria: Hydrozoa) are abundant predators found throughout the ocean and are important constituents of the global zooplankton community. They range in length from a few centimeters to tens of meters. They are gelatinous, fragile, and difficult to collect, so many aspects of the biology of these roughly 200 species remain poorly understood. To survey siphonophore genome diversity, we performed Illumina sequencing of 32 species sampled broadly across the phylogeny. Sequencing depth was sufficient to estimate nuclear genome size from k-mer spectra in six specimens, ranging from 0.7 to 2.3 Gb, with heterozygosity estimates between 0.69% and 2.32%. Incremental k-mer counting indicates k-mer peaks can be absent with nearly 20× read coverage, suggesting minimum genome sizes range from 1.4 to 5.6 Gb in the 25 samples without peaks in the k-mer spectra. This work confirms most siphonophore nuclear genomes are large relative to the genomes of other cnidarians, but also identifies several with reduced size that are tractable targets for future siphonophore nuclear genome assembly projects. We also assembled complete mitochondrial genomes for 33 specimens from these new data, indicating a conserved gene order shared among nonsiphonophore hydrozoans, Cystonectae, and some Physonectae, revealing the ancestral mitochondrial gene order of siphonophores. Our results also suggest extensive rearrangement of mitochondrial genomes within other Physonectae and in Calycophorae. Though siphonophores comprise a small fraction of cnidarian species, this survey greatly expands our understanding of cnidarian genome diversity. This study further illustrates both the importance of deep phylogenetic sampling and the utility of k-mer-based genome skimming in understanding the genomic diversity of a clade.


Assuntos
Cnidários , Genoma Mitocondrial , Hidrozoários , Animais , Cnidários/genética , Filogenia , Hidrozoários/genética , Genômica , Tamanho do Genoma
2.
Ecol Evol ; 11(9): 3933-3940, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976785

RESUMO

Complex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin-based photoreceptor cells, pigment cells, and lens cells. Eye evolution is understood through conceptual models that argue these parts gradually came together to support increasingly sophisticated visual functions. Despite the well-accepted logic of these conceptual models, explicit comparative studies to identify organismal functions of eye precursors are lacking. Here, we investigate how precursors functioned before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated the discharge of cnidocytes, the expensive single-use cells with various functions including prey capture, locomotion, and protection. Similar to a previous study of Hydra, we show an additional four distantly related cnidarian groups discharge significantly more cnidocytes when exposed to dim blue light compared with bright blue light. Our comparative analyses support the hypothesis that the cnidarian ancestor was capable of modulating cnidocyte discharge with light, which we speculate uses an opsin-based phototransduction pathway homologous to that previously described in Hydra. Although eye precursors might have had other functions like regulating timing of spawning, our findings are consistent with the hypothesis that photoreceptor cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the prolific origination of eyes in Cnidaria.

3.
Curr Biol ; 28(15): 2413-2419.e4, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30033336

RESUMO

Animal eyes vary considerably in morphology and complexity and are thus ideal for understanding the evolution of complex biological traits [1]. While eyes evolved many times in bilaterian animals with elaborate nervous systems, image-forming and simpler eyes also exist in cnidarians, which are ancient non-bilaterians with neural nets and regions with condensed neurons to process information. How often eyes of varying complexity, including image-forming eyes, arose in animals with such simple neural circuitry remains obscure. Here, we produced large-scale phylogenies of Cnidaria and their photosensitive proteins and coupled them with an extensive literature search on eyes and light-sensing behavior to show that cnidarian eyes originated at least eight times, with complex, lensed-eyes having a history separate from other eye types. Compiled data show widespread light-sensing behavior in eyeless cnidarians, and comparative analyses support ancestors without eyes that already sensed light with dispersed photoreceptor cells. The history of expression of photoreceptive opsin proteins supports the inference of distinct eye origins via separate co-option of different non-visual opsin paralogs into eyes. Overall, our results show eyes evolved repeatedly from ancestral photoreceptor cells in non-bilaterian animals with simple nervous systems, co-opting existing precursors, similar to what occurred in Bilateria. Our study underscores the potential for multiple, evolutionarily distinct visual systems even in animals with simple nervous systems.


Assuntos
Cnidários/anatomia & histologia , Cnidários/fisiologia , Evolução Molecular , Opsinas/genética , Animais , Evolução Biológica , Olho/anatomia & histologia , Opsinas/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA