Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(11): e0062023, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815378

RESUMO

The aim of this study was to determine if acrAB induction in Salmonella Typhimurium relies solely on RamA or if other transcriptional activator pathways are also involved, and to better understand the kinetics of induction of both acrAB and ramA. We evaluated the expression of acrAB in S. Typhimurium in response to a variety of compounds that are known to induce the expression of one or more of the transcriptional activators, MarA, SoxS, RamA, and Rob. We utilized green fluorescent protein (GFP) transcriptional reporter fusions to investigate the changes in the expression of acrAB, ramA, marA, and soxS following exposure to sub-inhibitory concentrations of antimicrobial compounds. Of the compounds tested, 13 induce acrAB expression in S. Typhimurium via RamA, MarA, SoxS, and Rob-dependent pathways. None of the tested antibiotics induced acrAB expression, and compounds that induced acrAB expression also induced a general stress response. The results from this study show that the majority of compounds tested induced acrAB via the RamA-dependent pathway. However, none of the antibiotic substrates of the AcrB efflux pump directly increased the expression of AcrAB either directly or indirectly via the induction of one of the transcriptional activators. Using a dual GFP/RFP reporter, we investigated the kinetics of the induction of ramA and acrAB simultaneously and found that acrAB gene expression was transient compared to ramA gene expression. ramA gene expression increased with time and would remain high or decrease slowly over the course of the experiment indicating that RamA exerts a wider global effect and is not limited to efflux regulation alone.


Assuntos
Antibacterianos , Transativadores , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Transativadores/genética , Salmonella typhimurium , Sorogrupo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204124

RESUMO

The closely related transcription factors MarA, SoxS, Rob and RamA control overlapping stress responses in many enteric bacteria. Furthermore, constitutive expression of such regulators is linked to clinical antibiotic resistance. In this work we have mapped the binding of MarA, SoxS, Rob and RamA across the Salmonella Typhimurium genome. In parallel, we have monitored changes in transcription start site use resulting from expression of the regulators. Together, these data allow direct and indirect gene regulatory effects to be disentangled. Promoter architecture across the regulon can also be deduced. At a phylogenetic scale, around one third of regulatory targets are conserved in most organisms encoding MarA, SoxS, Rob or RamA. We focused our attention on the control of csgD, which encodes a transcriptional activator responsible for stimulating production of curli fibres during biofilm formation. We show that expression of csgD is particularly sensitive to SoxS that binds upstream to repress transcription. This differs to the situation in Escherichia coli, where MarA regulates csgD indirectly.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Proteínas de Ligação a DNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Escherichia coli/genética , Regulon , Filogenia , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Clin Infect Dis ; 74(10): 1866-1871, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34618892

RESUMO

Antibiotics underpin modern medicine and are critical for pandemic preparedness. Push funding has revitalized the preclinical antimicrobial resistance (AMR) pipeline and government funding via CARB-X and BARDA, as well as private sector-led investment via the AMR Action Fund, will help several new antibiotics obtain regulatory approval. Nevertheless, revenues generated by new antibiotics are not considered sufficiently profitable by commercial developers to address unmet need. The question remains: Who could viably fund development and secure global equitable access for new antibiotics? Public health need should be the primary driver for antibiotic development. Improved prioritization and government oversight by funders who allocate public resources are a needed first step. In this framework, nonprofit research and development organizations, with support from public funders, and unconstrained by commercial profitability requirements are well positioned to work with public and private actors to viably provide new antibiotics to all in need.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos , Humanos
4.
J Antimicrob Chemother ; 77(3): 543-544, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195693

RESUMO

The discovery of antibiotics started a new era in medicine. However, antimicrobial resistance (AMR) is now outpacing the development of new antimicrobials. New political and economic models are required to tackle the developing crisis. In this article I look at the challenges and how we can work to overcome them.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos
5.
J Antimicrob Chemother ; 77(3): 633-640, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34897478

RESUMO

OBJECTIVES: To determine whether expression of efflux pumps and antibiotic susceptibility are altered in Escherichia coli in response to efflux inhibition. METHODS: The promoter regions of nine efflux pump genes (acrAB, acrD, acrEF, emrAB, macAB, cusCFBA, mdtK, mdtABC, mdfA) were fused to gfp in pMW82 and fluorescence from each reporter construct was used as a measure of the transcriptional response to conditions in which AcrB was inhibited, absent or made non-functional. Expression was also determined by RT-qPCR. Drug susceptibility of efflux pump mutants with missense mutations known or predicted to cause loss of function of the encoded efflux pump was investigated. RESULTS: Data from the GFP reporter constructs revealed that no increased expression of the tested efflux pump genes was observed when AcrB was absent, made non-functional, or inhibited by an efflux pump inhibitor/competitive substrate, such as PAßN or chlorpromazine. This was confirmed by RT-qPCR for PAßN and chlorpromazine; however, a small but significant increase in macB gene expression was seen when acrB is deleted. Efflux inhibitors only synergized with antibiotics in the presence of a functional AcrB. When AcrB was absent or non-functional, there was no impact on MICs when other efflux pumps were also made non-functional. CONCLUSIONS: Absence, loss-of-function, or inhibition of E. coli AcrB did not significantly increase expression of other efflux pump genes, which suggests there is no compensatory mechanism to overcome efflux inhibition and supports the discovery of inhibitors of AcrB as antibiotic adjuvants.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Adjuvantes Farmacêuticos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
6.
J Antimicrob Chemother ; 78(1): 133-140, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36308324

RESUMO

BACKGROUND: Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF. METHODS: Binding of EnvR protein upstream of acrAB was determined by electrophoretic mobility shift assays and the phenotypic consequence of envR overexpression on antimicrobial susceptibility, biofilm motility and invasion of eukaryotic cells in vitro was measured. Additionally, the global transcriptome of clinical Salmonella isolates overexpressing envR was determined by RNA-Seq. RESULTS: EnvR bound to the promoter region upstream of the genes coding for the major efflux pump AcrAB in Salmonella, inhibiting transcription and preventing production of AcrAB protein. The phenotype conferred by overexpression of envR mimicked deletion of acrB as it conferred multidrug susceptibility, decreased motility and decreased invasion into intestinal cells in vitro. Importantly, we demonstrate the clinical relevance of this regulatory mechanism because RNA-Seq revealed that a drug-susceptible clinical isolate of Salmonella had low acrB expression even though expression of its major regulator RamA was very high; this was caused by very high EnvR expression. CONCLUSIONS: In summary, we show that EnvR is a potent repressor of acrAB transcription in Salmonella, and can override binding by RamA so preventing MDR to clinically useful drugs. Finding novel tools to increase EnvR expression may form the basis of a new way to prevent or treat MDR infections.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Salmonella typhimurium/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica
7.
J Antimicrob Chemother ; 77(5): 1334-1343, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35170719

RESUMO

BACKGROUND: Neonatal sepsis is a serious bacterial infection of neonates, globally killing up to 680 000 babies annually. It is frequently complicated by antimicrobial resistance, particularly in low- and middle-income country (LMIC) settings with widespread resistance to the WHO's recommended empirical regimen of ampicillin and gentamicin. OBJECTIVES: We assessed the utility of flomoxef and fosfomycin as a potential alternative empirical regimen for neonatal sepsis in these settings. METHODS: We studied the combination in a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment and chequerboard assays. We further assessed the combination using clinically relevant regimens in the HFIM with six Enterobacterales strains with a range of flomoxef/fosfomycin MICs. RESULTS: Pharmacokinetic/pharmacodynamic modelling of the HFIM experimental output, along with data from chequerboard assays, indicated synergy of this regimen in terms of bacterial killing and prevention of emergence of fosfomycin resistance. Flomoxef monotherapy was sufficient to kill 3/3 strains with flomoxef MICs ≤0.5 mg/L to sterility. Three of three strains with flomoxef MICs ≥8 mg/L were not killed by fosfomycin or flomoxef monotherapy; 2/3 of these were killed with the combination of the two agents. CONCLUSIONS: These data suggest that flomoxef/fosfomycin could be an efficacious and synergistic regimen for the empirical treatment of neonatal sepsis in LMIC settings with prevalent antimicrobial resistance. Our HFIM results warrant further assessment of the flomoxef/fosfomycin combination in clinical trials.


Assuntos
Fosfomicina , Sepse Neonatal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
8.
J Antimicrob Chemother ; 77(12): 3349-3357, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36177766

RESUMO

BACKGROUND: Annual mortality from neonatal sepsis is an estimated 430 000-680 000 infants globally, most of which occur in low- and middle-income countries (LMICs). The WHO currently recommends a narrow-spectrum ß-lactam (e.g. ampicillin) and gentamicin as first-line empirical therapy. However, available epidemiological data demonstrate high rates of resistance to both agents. Alternative empirical regimens are needed. Flomoxef and amikacin are two off-patent antibiotics with potential for use in this setting. OBJECTIVES: To assess the pharmacodynamics of flomoxef and amikacin in combination. METHODS: The pharmacodynamic interaction of flomoxef and amikacin was assessed in chequerboard assays and a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment. The combination was further assessed in HFIM experiments mimicking neonatal plasma exposures of clinically relevant doses of both drugs against five Enterobacterales isolates with a range of flomoxef/amikacin MICs. RESULTS: Flomoxef and amikacin in combination were synergistic in bacterial killing in both assays and prevention of emergence of amikacin resistance in the HFIM. In the HFIM assessing neonatal-like drug exposures, the combination killed 3/5 strains to sterility, (including 2/5 that monotherapy with either drug failed to kill) and failed to kill the 2/5 strains with flomoxef MICs of 32 mg/L. CONCLUSIONS: We conclude that the combination of flomoxef and amikacin is synergistic and is a potentially clinically effective regimen for the empirical treatment of neonatal sepsis in LMIC settings and is therefore suitable for further assessment in a clinical trial.


Assuntos
Amicacina , Sepse Neonatal , Lactente , Recém-Nascido , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Cefalosporinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Atenção à Saúde
9.
Antimicrob Agents Chemother ; 65(7): e0029321, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972238

RESUMO

Antimicrobial resistance (particularly through extended-spectrum ß-lactamase and aminoglycoside-modifying enzyme production) in neonatal sepsis is a global problem, particularly in low- and middle-income countries, with significant mortality rates. High rates of resistance are reported for the current WHO-recommended first-line antibiotic regimen for neonatal sepsis, i.e., ampicillin and gentamicin. We assessed the utility of fosfomycin and amikacin as a potential alternative regimen to be used in settings of increasingly prevalent antimicrobial resistance. The combination was studied in a 16-arm dose-ranged hollow-fiber infection model (HFIM) experiment. The combination of amikacin and fosfomycin enhanced bactericidal activity and prevented the emergence of resistance, compared to monotherapy with either antibiotic. Modeling of the experimental quantitative outputs and data from checkerboard assays indicated synergy. We further assessed the combination regimen at clinically relevant doses in the HFIM with nine Enterobacterales strains with high fosfomycin and amikacin MICs and demonstrated successful kill to sterilization for 6/9 strains. From these data, we propose a novel combination breakpoint threshold for microbiological success for this antimicrobial combination against Enterobacterales strains, i.e., MICF × MICA < 256 (where MICF and MICA are the fosfomycin and amikacin MICs, respectively). Monte Carlo simulations predict that a standard fosfomycin-amikacin neonatal regimen would achieve >99% probability of pharmacodynamic success for strains with MICs below this threshold. We conclude that the combination of fosfomycin with amikacin is a viable regimen for the empirical treatment of neonatal sepsis and is suitable for further clinical assessment in a randomized controlled trial.


Assuntos
Antibacterianos , Fosfomicina , Sepse Neonatal , Amicacina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
10.
BMC Infect Dis ; 21(1): 545, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107899

RESUMO

BACKGROUND: Effective treatment of sepsis due to carbapenem-resistant Gram-negative bacteria (CR-GNB) remains a challenge for clinicians worldwide. In recent years, the combination of antibiotics has become the preferred treatment strategy for CR-GNB infection. However, robust evidence to support this approach is lacking. This systematic review aimed at critically evaluating all available antibiotic options for CR-GNB sepsis with particular focus on combination. METHODS: We systematically searched published literature from January 1945 until December 2018 for observational comparative and non-comparative studies and randomized trials examining any antibiotic option for CR-GNB. Studies were included if reporting microbiologically-confirmed infection caused by Acinetobacter baumannii, Enterobacteriaceae/Klebsiella spp., or Pseudomonas aeruginosa, reporting at least one of the study outcomes, and definitive antibiotic treatment. Carbapenem-resistance was defined as phenotypically-detected in vitro resistance to at least one of the following carbapenems: doripenem, ertapenem, imipenem, meropenem. Each antibiotic regimen was classified as "defined" when at least the molecular class(es) composing the regimen was detailed. Primary outcomes were 30-day and attributable mortality. Bayesian network meta-analysis (NMA) approach was selected for quantitative synthesis to explore feasibility of pooling data on antibiotic regimens. RESULTS: A total of 6306 records were retrieved and 134 studies including 11,546 patients were included: 54 studies were on Acinetobacter, 52 on Enterobacteriaceae/Klebsiella, 21 on mixed Gram-negative, and 7 on Pseudomonas. Nine (7%) were RCTs; 19 prospective cohorts (14%), 89 (66%) retrospective, and 17 (13%) case series. Forty-one studies (31%) were multicentric. Qualitative synthesis showed an heterogeneous and scattered reporting of key-clinical and microbiological variables across studies. Ninety-two distinct antibiotic regimens were identified with 47 of them (51%, 5863 patients) not reporting any details on numbers, type, dosage and in vitro activity of the included antibiotic molecules. The NMAs could not be performed for any of the selected outcome given the presence of too many disconnected components. CONCLUSION: The existing evidence is insufficient to allowing for the formulation of any evidence-based therapeutic recommendation for CR-GNB sepsis. Future studies must provide a standardized definition of antibiotic regimen to drive recommendations for using combination of antibiotics that can be reliably applied to clinical practice.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Quimioterapia Combinada , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Acinetobacter baumannii , Carbapenêmicos , Estudos Clínicos como Assunto , Enterobacteriaceae , Humanos , Pseudomonas aeruginosa
11.
J Math Biol ; 82(4): 31, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33694073

RESUMO

Efflux pumps are a mechanism of intrinsic and evolved resistance in bacteria. If an efflux pump can expel an antibiotic so that its concentration within the cell is below a killing threshold the bacteria are resistant to the antibiotic. Efflux pumps may be specific or they may pump various different substances. This is why many efflux pumps confer multi drug resistance (MDR). In particular over expression of the AcrAB-TolC efflux pump system confers MDR in both Salmonella and Escherichia coli. We consider the complex gene regulation network that controls expression of genes central to controlling the efflux associated genes acrAB and acrEF in Salmonella. We present the first mathematical model of this gene regulatory network in the form of a system of ordinary differential equations. Using a time dependent asymptotic analysis, we examine in detail the behaviour of the efflux system on various different timescales. Asymptotic approximations of the steady states provide an analytical comparison of targets for efflux inhibition.


Assuntos
Proteínas de Escherichia coli , Redes Reguladoras de Genes , Modelos Biológicos , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/genética , Salmonella/genética , Salmonella/metabolismo , Tempo
12.
Artigo em Inglês | MEDLINE | ID: mdl-31988103

RESUMO

In Enterobacteriales, the AcrAB-TolC efflux pump exports substrates, including antimicrobials, from the cell. Overexpression of AcrAB-TolC can occur after exposure to fluoroquinolones, leading to multidrug resistance. The expression of AcrAB-TolC in Salmonella is primarily regulated by the transcriptional activator RamA. However, other transcriptional activators, such as MarA, SoxRS, and Rob, can influence AcrAB-TolC expression. This study determined whether the overproduction or absence of RamA influences the mutation rate or the phenotype of mutants selected in Salmonella enterica serovar Typhimurium SL1344 after ciprofloxacin exposure. The absence of RamA (SL1344 ramA::aph) resulted in mutation frequencies/rates similar to those of wild-type Salmonella Typhimurium SL1344. However, the overproduction of RamA (SL1344 ramR::aph) and, consequently, AcrB resulted in a significantly higher mutation frequency and rate than for wild-type Salmonella Typhimurium SL1344. Whole-genome sequencing revealed that in addition to selecting gyrA mutants resistant to quinolones, SL1344 and SL1344 ramA::aph also produced multidrug-resistant (MDR) mutants, associated with mutations in soxR Conversely, mutations in SL1344 ramR::aph occurred in gyrA only. Although transcriptional regulators such as SoxRS are believed to play a minor role in AcrAB-TolC regulation under antibiotic selective pressure, we show that soxR mutants can be selected after exposure to ciprofloxacin, including when RamA is absent. This demonstrates that under selective pressure, Salmonella can respond to increased efflux pump expression by mutating other AcrAB-TolC regulatory genes, allowing for the evolution of MDR. Understanding how Salmonella responds to antibiotic pressure in the absence/overproduction of RamA is important if targeting transcriptional regulators to alter efflux is to be considered an avenue for future drug discovery.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Taxa de Mutação , Salmonella typhimurium/genética , Transativadores/genética , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Fenótipo
13.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31548184

RESUMO

We evaluated the in vitro susceptibility to the first-in-class spiropyrimidinetrione zoliflodacin among recent consecutive clinical Neisseria gonorrhoeae isolates cultured in Thailand (n=99; 2018) and South Africa (n=100; 2015-2017). Zoliflodacin was highly active in vitro against all tested isolates (MIC range: 0.004-0.25; MIC50: 0.064, MIC90: 0.125 µg/ml), with no cross-resistance to any of the seven comparator antimicrobials. Our data support the initiation of the global zoliflodacin phase 3 randomized controlled clinical trial for uncomplicated gonorrhea.

14.
J Antimicrob Chemother ; 74(11): 3128-3134, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626705

RESUMO

The AcrAB-TolC MDR efflux system confers intrinsic MDR and overproduction confers clinically relevant resistance to some antibiotics active against Gram-negative bacteria. The system is made up of three components, namely AcrA, AcrB and TolC, otherwise known as the AcrAB-TolC tripartite system. Inactivation or deletion of a gene encoding one of the constituent proteins, or substitution of a single amino acid in the efflux pump component AcrB that results in loss of efflux function, confers increased antibiotic susceptibility. Clinically relevant resistance can be mediated by a mutation in acrB that changes the way AcrB substrates are transported. However, it is more common that resistant clinical and veterinary isolates overproduce the AcrAB-TolC MDR efflux system. This is due to mutations in genes such as marR and ramR that encode repressors of transcription factors (MarA and RamA, respectively) that when produced activate expression of the acrAB and tolC genes thereby increasing efflux. The Lon protease degrades MarA and RamA to return the level of efflux to that of the WT. Furthermore, the levels of AcrAB-TolC are regulated by CsrA. Studies with fluorescent reporters that report levels of acrAB and regulatory factors allowed the development of a new tool for discovering efflux inhibitors. Screens of the Prestwick Chemical Library and a large library from a collaborating pharmaceutical company have generated a number of candidate compounds for further research.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Bactérias/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Testes de Sensibilidade Microbiana , Mutação , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética
15.
J Antimicrob Chemother ; 74(7): 1769-1770, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30793751

RESUMO

The Global Antibiotic Research & Development Partnership (GARDP) has launched a project, REVIVE, to connect and support the antimicrobial research and development (R&D) community. REVIVE's educational activities include a webinar series and sessions and presentations at key conferences. REVIVE also aims to connect antimicrobial researchers with each other and with current and retired experts in the field, and to develop a comprehensive repository of relevant resources for the R&D community.


Assuntos
Antibacterianos/isolamento & purificação , Desenvolvimento de Medicamentos/organização & administração , Descoberta de Drogas/organização & administração , Serviços de Informação/organização & administração , Cooperação Internacional , Pesquisadores/organização & administração , Humanos
16.
J Antimicrob Chemother ; 74(12): 3521-3529, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730160

RESUMO

OBJECTIVES: Resistance in Neisseria gonorrhoeae to all gonorrhoea therapeutic antimicrobials has emerged. Novel therapeutic antimicrobials are imperative and the first-in-class spiropyrimidinetrione zoliflodacin appears promising. Zoliflodacin could be introduced in dual antimicrobial therapies to prevent the emergence and/or spread of resistance. We investigated the in vitro activity of and selection of resistance to zoliflodacin alone and in combination with six gonorrhoea therapeutic antimicrobials against N. gonorrhoeae. METHODS: The international gonococcal reference strains WHO F (WT) and WHO O, WHO V and WHO X (strains with different AMR profiles) were examined. Zoliflodacin was evaluated alone or combined with ceftriaxone, cefixime, spectinomycin, gentamicin, tetracycline, cethromycin or sitafloxacin in chequerboard assays, time-kill curve analysis and selection-of-resistance studies. RESULTS: Zoliflodacin alone or in combination with all six antimicrobials showed rapid growth inhibition against all examined strains. The time-kill curve analysis indicated that tetracycline or cethromycin combined with zoliflodacin can significantly decrease the zoliflodacin kill rate in vitro. The frequency of selected zoliflodacin-resistance mutations was low when evaluated as a single agent and further reduced for all antimicrobial combinations. All resistant mutants contained the GyrB mutations D429N, K450T or K450N, resulting in zoliflodacin MICs of 0.5-4 mg/L. CONCLUSIONS: Zoliflodacin, alone or in combination with sexually transmitted infection therapeutic antimicrobials, rapidly kills gonococci with infrequent resistance emergence. Zoliflodacin remains promising for gonorrhoea oral monotherapy and as part of dual antimicrobial therapy with low resistance emergence potential. A Phase III trial evaluating efficacy and safety of zoliflodacin for uncomplicated gonorrhoea treatment is planned in 2019.


Assuntos
Antibacterianos/farmacologia , Barbitúricos/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Compostos de Espiro/farmacologia , Antibacterianos/classificação , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Isoxazóis , Testes de Sensibilidade Microbiana , Modelos Teóricos , Morfolinas , Mutação , Oxazolidinonas
17.
Environ Res ; 168: 14-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253312

RESUMO

State of art metagenomics were used to investigate the microbial population, antibiotic resistance genes and plasmids of medical interest in wastewater used for urban agriculture in Ouagadougou (Burkina Faso). Wastewater samples were collected from three canals near agricultural fields in three neighbourhoods. Assessment of microbial population diversity revealed different microbial patterns among the different samples. Sequencing reads from the wastewaters revealed different functional specializations of microbial communities, with the predominance of carbohydrates and proteins metabolism functions. Eleven pathogen-specific and 56 orthologous virulence factor genes were detected in the wastewater samples. These virulence factors are usually found in human pathogens that cause gastroenteritis and/or diarrhoea. A wide range of antibiotic resistance genes was identified; 81 are transmissible by mobile genetic elements. These included seven different extended spectrum ß-lactamase genes encoding synthesis of four enzyme families, including two metallo-ß-lactamases (blaAIM-1 and blaGES-21). Ten different incompatibility groups of Enterobacteriaceae plasmid replicons (ColE, FIB, FIC, FII, P, Q, R, U, Y, and A/C), and 30 plasmid replicon types from Gram-positive bacteria. All are implicated in the wide distribution of antibiotic resistance genes. We conclude that wastewater used for urban agriculture in the city represents a high risk for spreading bacteria and antimicrobial resistance among humans and animals.


Assuntos
Irrigação Agrícola , Farmacorresistência Bacteriana , Fatores de Virulência , Águas Residuárias , Agricultura , Animais , Antibacterianos , Burkina Faso , Farmacorresistência Bacteriana/genética , Humanos , Fatores de Virulência/genética , Águas Residuárias/microbiologia , beta-Lactamases
18.
Nucleic Acids Res ; 45(22): 12798-12807, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040729

RESUMO

Carbon Storage Regulator A (CsrA) is an RNA binding protein that acts as a global regulator of diverse genes. Using a combination of genetics and biochemistry we show that CsrA binds directly to the 5' end of the transcript encoding AcrAB. Deletion of csrA or mutagenesis of the CsrA binding sites reduced production of both AcrA and AcrB. Nucleotide substitutions at the 5' UTR of acrA mRNA that could potentially weaken the inhibitory RNA secondary structure, allow for more efficient translation of the AcrAB proteins. Given the role of AcrAB-TolC in multi-drug efflux we suggest that CsrA is a potential drug target.


Assuntos
Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Genéticos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transativadores/genética , Transativadores/metabolismo
19.
J Antimicrob Chemother ; 73(6): 1452-1459, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438542

RESUMO

Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.


Assuntos
Antibacterianos/química , Descoberta de Drogas , Indústria Farmacêutica/estatística & dados numéricos , Resistência Microbiana a Medicamentos , Antibacterianos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Desenho de Fármacos , Indústria Farmacêutica/economia , Indústria Farmacêutica/legislação & jurisprudência , Humanos , Pesquisa
20.
Mol Syst Biol ; 13(3): 917, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28265005

RESUMO

Despite our continuous improvement in understanding antibiotic resistance, the interplay between natural selection of resistance mutations and the environment remains unclear. To investigate the role of bacterial metabolism in constraining the evolution of antibiotic resistance, we evolved Escherichia coli growing on glycolytic or gluconeogenic carbon sources to the selective pressure of three different antibiotics. Profiling more than 500 intracellular and extracellular putative metabolites in 190 evolved populations revealed that carbon and energy metabolism strongly constrained the evolutionary trajectories, both in terms of speed and mode of resistance acquisition. To interpret and explore the space of metabolome changes, we developed a novel constraint-based modeling approach using the concept of shadow prices. This analysis, together with genome resequencing of resistant populations, identified condition-dependent compensatory mechanisms of antibiotic resistance, such as the shift from respiratory to fermentative metabolism of glucose upon overexpression of efflux pumps. Moreover, metabolome-based predictions revealed emerging weaknesses in resistant strains, such as the hypersensitivity to fosfomycin of ampicillin-resistant strains. Overall, resolving metabolic adaptation throughout antibiotic-driven evolutionary trajectories opens new perspectives in the fight against emerging antibiotic resistance.


Assuntos
Ampicilina/farmacologia , Resistência Microbiana a Medicamentos , Escherichia coli/crescimento & desenvolvimento , Metabolômica/métodos , Evolução Biológica , DNA Bacteriano/análise , Metabolismo Energético , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Gluconeogênese , Glicólise , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA