Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175572

RESUMO

The aim of the study was to plasticize corn starch with two selected urea (U)-rich plasticizers: choline chloride (CC):U or betaine (B):U eutectic mixtures at a molar ratio of 1:5 with a presence of spent coffee grounds as a filler. The biomaterials were prepared via a solventless one-step extrusion method and then extrudates were thermoformed using compression molding into sheets. The materials were characterized using mechanical and sorption tests, TGA, DMTA and FTIR. Additionally, a study on the biodegradation and remaining nitrogen content in soil was conducted. For the first time, an influence on physiological state of growing plants of the materials presence in soil was investigated. The addition of the coffee filler slightly increased the mechanical properties and decreased the swelling degree of the materials. The DMTA results indicated that biocomposites were easily thermoformable and the high filler addition (20 pph per polymer matrix) did not affect the processability. According to the biodegradation test results, the materials disappeared in soil within ca. 70 days. The results from this study on the physiological state of growing plants revealed that the materials, especially plasticized with CCU, did not exhibit any toxic effect on the yellow dwarf bean. The percentage of total nitrogen in the soil substrate in comparison with the control increased indicating an effective release of nitrogen from the TPS materials into the substrate.


Assuntos
Café , Polímeros , Polímeros/química , Excipientes , Amido/química , Solo
2.
Materials (Basel) ; 17(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473683

RESUMO

In this study, we conducted the first plasticization of wheat flour (WF) with the addition of choline chloride:urea (1:5 molar ratio) eutectic mixture as a plasticizer and spent coffee grounds (cf) as a filler. Thermoplastic wheat flour (TPWF) films were obtained via twin-screw extrusion and then thermocompression. Their physicochemical characterization included mechanical tests, dynamic mechanical thermal analysis (DMTA), and sorption tests. XRD analysis revealed that the eutectic plasticizer led to a high degree of WF amorphization, which affected the physicochemical properties of TPWF. The results indicated that it was easy for the TPWF biocomposites to undergo thermocompression even with a high amount of the filler (20 pph per flour). The addition of the cf into TPWF led to an increase in tensile strength and a decrease in the swelling degree of the biocomposites. Biodegradation tests in soil revealed that the materials wholly degraded within 11 weeks. Moreover, a study of cultivated plants indicated that the biocomposites did not exhibit a toxic influence on the model rowing plant.

3.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685237

RESUMO

Bioactive polypropylene (PP) films with active agents) presence for food packaging application have been prepared and characterized. The novel modified PP films were obtained via PP/additives systems regranulation and cast extrusion. The influence of two types of plasticizers (natural agents as well as commercial synthetic product) and bioactive additives on final features, e.g., mechanical properties, was evaluated. Moreover, the biocidal activity of the films was determined. Due to their functional properties, they are developed as additives to packaging plastic materials such as polyolefins. The study results presented in our work may indirectly contribute to environmental protection by reducing food waste. The aim of the work was to obtain innovative, functional packaging materials with an ability to prolong the shelf life of food products. The best antimicrobial properties were observed for the sample based on 5 wt.% oregano oil (OO) and 5 wt.% cedar oil (OC) in PP matrix. A microbial test revealed that the system causes total reduction in the following microorganisms: B. subtilis, E. coli, S. aureus, P. putida, C. albicans, A. alternata, F. oxysporum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA