Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Reprod Biomed Online ; 46(5): 808-818, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130622

RESUMO

RESEARCH QUESTION: Can Gardner embryo grades be converted to numeric interval variables to improve the incorporation of embryo grading in statistical analyses? DESIGN: An equation that can be used to convert Gardner embryo grades to regular interval scale variables was developed: the numerical embryo quality scoring index (NEQsi). The NEQsi system was then validated with a retrospective chart analysis assessing IVF cycles (n = 1711) conducted at a single Canadian fertility centre between 2014 and 2022. Gardner embryo grades on file were assigned using EmbryoScope and converted to NEQsi scores. Descriptive statistics, univariate logistic regressions and generalized estimating equations with cycle outcomes were prepared to demonstrate the relationship between NEQsi score and probability of pregnancy. RESULTS: NEQsi produces interval numerical scores that range from 2 to 11. Patient case files in which single embryo transfers occurred (n = 1711) were examined and the Gardner embryo grades on file were converted to NEQsi scores. NEQsi scores ranged from 3 to 11, with a median score of 9. A positive linear relationship existed between the NEQsi scores and the probability of pregnancy (as assessed by quantitative ß-HCG). The NEQsi score was a significant predictor of pregnancy (P < 0.001). CONCLUSION: Gardner embryo grades can be converted to interval variables and used directly statistical analyses.


Assuntos
Fertilidade , Fertilização in vitro , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Canadá , Embrião de Mamíferos , Taxa de Gravidez
2.
J Biol Chem ; 294(39): 14454-14466, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31337707

RESUMO

Members of a large family of Ankyrin Repeat Domain (ANKRD) proteins regulate numerous cellular processes by binding to specific protein targets and modulating their activity, stability, and other properties. The same ANKRD protein may interact with different targets and regulate distinct cellular pathways. The mechanisms responsible for switches in the ANKRDs' behavior are often unknown. We show that cells' metabolic state can markedly alter interactions of an ANKRD protein with its target and the functional outcomes of this interaction. ANKRD9 facilitates degradation of inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in GTP biosynthesis. Under basal conditions ANKRD9 is largely segregated from the cytosolic IMPDH2 in vesicle-like structures. Upon nutrient limitation, ANKRD9 loses its vesicular pattern and assembles with IMPDH2 into rodlike filaments, in which IMPDH2 is stable. Inhibition of IMPDH2 activity with ribavirin favors ANKRD9 binding to IMPDH2 rods. The formation of ANKRD9/IMPDH2 rods is reversed by guanosine, which restores ANKRD9 associations with the vesicle-like structures. The conserved Cys109Cys110 motif in ANKRD9 is required for the vesicle-to-rods transition as well as binding and regulation of IMPDH2. Oppositely to overexpression, ANKRD9 knockdown increases IMPDH2 levels and prevents formation of IMPDH2 rods upon nutrient limitation. Taken together, the results suggest that a guanosine-dependent metabolic switch determines the mode of ANKRD9 action toward IMPDH2.


Assuntos
IMP Desidrogenase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Vesículas Citoplasmáticas/metabolismo , Guanosina/metabolismo , Células HEK293 , Células HeLa , Humanos , IMP Desidrogenase/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nutrientes/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
3.
J Biol Chem ; 286(44): 38583-38591, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21900248

RESUMO

Subunit a is the main part of the membrane stator of the ATP synthase molecular turbine. Subunit c is the building block of the membrane rotor. We have generated two molecular fusions of a and c subunits with different orientations of the helical hairpin of subunit c. The a/c fusion protein with correct orientation of transmembrane helices was inserted into the membrane, and co-incorporated into the F(0) complex of ATP synthase with wild type subunit c. The fused c subunit was incorporated into the c-ring tethering the ATP synthase rotor to the stator. The a/c fusion with incorrect orientation of the c-helices required wild type subunit c for insertion into the membrane. In this case, the fused c subunit remained on the periphery of the c-ring and did not interfere with rotor movement. Wild type subunit a inserted into the membrane equally well with wild type subunit c and c-ring assembly mutants that remained monomeric in the membrane. These results show that interaction with monomeric subunit c triggers insertion of subunit a into the membrane, and initiates formation of the a-c complex, the ion-translocating module of the ATP synthase. Correct assembly of the ATP synthase incorporating topologically correct fusion of subunits a and c validates using this model protein for high resolution structural studies of the ATP synthase proton channel.


Assuntos
Adenosina Trifosfatases/química , ATPases Bacterianas Próton-Translocadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/química , Transporte Biológico , Catálise , Membrana Celular/metabolismo , Conformação Molecular , Plasmídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Prótons , Proteínas Recombinantes de Fusão/química
4.
Sci Rep ; 8(1): 11361, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054535

RESUMO

ATP synthase is powered by the flow of protons through the molecular turbine composed of two α-helical integral membrane proteins, subunit a, which makes a stator, and a cylindrical rotor assembly made of multiple copies of subunit c. Transient protonation of a universally conserved carboxylate on subunit c (D61 in E. coli) gated by the electrostatic interaction with arginine on subunit a (R210 in E. coli) is believed to be a crucial step in proton transfer across the membrane. We used a fusion protein consisting of subunit a and the adjacent helices of subunit c to test by NMR spectroscopy if cD61 and aR210 are involved in an electrostatic interaction with each other, and found no evidence of such interaction. We have also determined that R140 does not form a salt bridge with either D44 or D124 as was suggested previously by mutation analysis. Our results demonstrate the potential of using arginines as NMR reporter groups for structural and functional studies of challenging membrane proteins.


Assuntos
Modelos Moleculares , Engenharia de Proteínas , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Sais/química , Arginina/química , Ácido Aspártico/química , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Protein Sci ; 21(2): 279-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162071

RESUMO

NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/biossíntese , Dobramento de Proteína , ATPases Translocadoras de Prótons/biossíntese , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , Membrana Celular/química , Sistema Livre de Células/enzimologia , Sistema Livre de Células/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Micelas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/química , Fosfolipídeos/farmacologia , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA