Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Reprod ; 38(12): 2456-2469, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37815487

RESUMO

STUDY QUESTION: Can in vitro maturation (IVM) and developmental competence of human oocytes be improved by co-culture with ovarian support cells (OSCs) derived from human-induced pluripotent stem cells (hiPSCs)? SUMMARY ANSWER: OSC-IVM significantly improves the rates of metaphase II (MII) formation and euploid Day 5 or 6 blastocyst formation, when compared to a commercially available IVM system. WHAT IS KNOWN ALREADY: IVM has historically shown highly variable performance in maturing oocytes and generating oocytes with strong developmental capacity, while limited studies have shown a positive benefit of primary granulosa cell co-culture for IVM. We recently reported the development of OSCs generated from hiPSCs that recapitulate dynamic ovarian function in vitro. STUDY DESIGN, SIZE, DURATION: The study was designed as a basic science study, using randomized sibling oocyte specimen allocation. Using pilot study data, a prospective sample size of 20 donors or at least 65 oocytes per condition were used for subsequent experiments. A total of 67 oocyte donors were recruited to undergo abbreviated gonadotropin stimulation with or without hCG triggers and retrieved cumulus-oocyte complexes (COCs) were allocated between the OSC-IVM or control conditions (fetal-like OSC (FOSC)-IVM or media-only IVM) in three independent experimental design formats. The total study duration was 1 April 2022 to 1 July 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte donors between the ages of 19 and 37 years were recruited for retrieval after informed consent, with assessment of anti-Mullerian hormone, antral follicle count, age, BMI and ovarian pathology used for inclusion and exclusion criteria. In experiment 1, 27 oocyte donors were recruited, in experiment 2, 23 oocyte donors were recruited, and in experiment 3, 17 oocyte donors and 3 sperm donors were recruited. The OSC-IVM culture condition was composed of 100 000 OSCs in suspension culture with hCG, recombinant FSH, androstenedione, and doxycycline supplementation. IVM controls lacked OSCs and contained either the same supplementation, FSH and hCG only (a commercial IVM control), or FOSCs with the same supplementation (Media control). Experiment 1 compared OSC-IVM, FOSC-IVM, and a Media control, while experiments 2 and 3 compared OSC-IVM and a commercial IVM control. Primary endpoints in the first two experiments were the MII formation (i.e. maturation) rate and morphological quality assessment. In the third experiment, the fertilization and embryo formation rates were assessed with genetic testing for aneuploidy and epigenetic quality in blastocysts. MAIN RESULTS AND THE ROLE OF CHANCE: We observed a statistically significant improvement (∼1.5×) in maturation outcomes for oocytes that underwent IVM with OSCs compared to control Media-IVM and FOSC-IVM in experiment 1. More specifically, the OSC-IVM group yielded a MII formation rate of 68% ± 6.83% SEM versus 46% ± 8.51% SEM in the Media control (P = 0.02592, unpaired t-test). FOSC-IVM yielded a 51% ± 9.23% SEM MII formation rate which did not significantly differ from the media control (P = 0.77 unpaired t-test). Additionally, OSC-IVM yielded a statistically significant ∼1.6× higher average MII formation rate at 68% ± 6.74% when compared to 43% ± 7.90% in the commercially available IVM control condition (P = 0.0349, paired t-test) in experiment 2. Oocyte morphological quality between OSC-IVM and the controls did not significantly differ. In experiment 3, OSC-IVM oocytes demonstrated a statistically significant improvement in Day 5 or 6 euploid blastocyst formation per COC compared to the commercial IVM control (25% ± 7.47% vs 11% ± 3.82%, P = 0.0349 logistic regression). Also in experiment 3, the OSC-treated oocytes generated blastocysts with similar global and germline differentially methylated region epigenetic profiles compared commercial IVM controls or blastocysts after either conventional ovarian stimulation. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: While the findings of this study are compelling, the cohort size remains limited and was powered on preliminary pilot studies, and the basic research nature of the study limits generalizability compared to randomized control trials. Additionally, use of hCG-triggered cycles results in a heterogenous oocyte cohort, and potential differences in the underlying maturation state of oocytes pre-IVM may limit or bias findings. Further research is needed to clarify and characterize the precise mechanism of action of the OSC-IVM system. Further research is also needed to establish whether these embryos are capable of implantation and further development, a key indication of their clinical utility. WIDER IMPLICATIONS OF THE FINDINGS: Together, these findings demonstrate a novel approach to IVM with broad applicability to modern ART practice. The controls used in this study are in line with and have produced similar to findings to those in the literature, and the outcome of this study supports findings from previous co-culture studies that found benefits of primary granulosa cells on IVM outcomes. The OSC-IVM system shows promise as a highly flexible IVM approach that can complement a broad range of stimulation styles and patient populations. Particularly for patients who cannot or prefer not to undergo conventional gonadotropin stimulation, OSC-IVM may present a viable path for obtaining developmentally competent, mature oocytes. STUDY FUNDING/COMPETING INTEREST(S): A.D.N., A.B.F., A.G., B.P., C.A., C.C.K., F.B., G.R., K.S.P., K.W., M.M., P.C., S.P., and M.-J.F.-G. are shareholders in the for-profit biotechnology company Gameto Inc. P.R.J.F. declares paid consultancy for Gameto Inc. P.C. also declares paid consultancy for the Scientific Advisory Board for Gameto Inc. D.H.M. has received consulting services from Granata Bio, Sanford Fertility and Reproductive Medicine, Gameto, and Buffalo IVF, and travel support from the Upper Egypt Assisted Reproduction Society. C.C.K., S.P., M.M., A.G., B.P., K.S.P., G.R., and A.D.N. are listed on a patent covering the use of OSCs for IVM: U.S. Provisional Patent Application No. 63/492,210. Additionally, C.C.K. and K.W. are listed on three patents covering the use of OSCs for IVM: U.S. Patent Application No. 17/846,725, U.S Patent Application No. 17/846,845, and International Patent Application No.: PCT/US2023/026012. C.C.K., M.P.S., and P.C. additionally are listed on three patents for the transcription factor-directed production of granulosa-like cells from stem cells: International Patent Application No.: PCT/US2023/065140, U.S. Provisional Application No. 63/326,640, and U.S. Provisional Application No. 63/444,108. The remaining authors have no conflicts of interest to declare.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Células-Tronco Pluripotentes Induzidas , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Técnicas de Cocultura , Hormônio Foliculoestimulante/metabolismo , Gonadotropinas/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Projetos Piloto , Estudos Prospectivos , Sêmen
2.
Nucleic Acids Res ; 49(D1): D229-D235, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32882008

RESUMO

T-box riboswitches constitute a large family of tRNA-binding leader sequences that play a central role in gene regulation in many gram-positive bacteria. Accurate inference of the tRNA binding to T-box riboswitches is critical to predict their cis-regulatory activity. However, there is no central repository of information on the tRNA binding specificities of T-box riboswitches, and de novo prediction of binding specificities requires advanced knowledge of computational tools to annotate riboswitch secondary structure features. Here, we present the T-box Riboswitch Annotation Database (TBDB, https://tbdb.io), an open-access database with a collection of 23,535 T-box riboswitch sequences, spanning the major phyla of 3,632 bacterial species. Among structural predictions, the TBDB also identifies specifier sequences, cognate tRNA binding partners, and downstream regulatory targets. To our knowledge, the TBDB presents the largest collection of feature, sequence, and structural annotations carried out on this important family of regulatory RNA.


Assuntos
Bactérias/genética , Bases de Dados de Ácidos Nucleicos , RNA de Transferência/genética , Riboswitch , Software , Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Internet , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo
3.
Phys Chem Chem Phys ; 22(26): 14976-14982, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32588846

RESUMO

Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.


Assuntos
Benzimidazóis/química , Hidrocarbonetos Aromáticos com Pontes/química , Compostos Heterocíclicos com 3 Anéis/química , Imidazóis/química , Teoria da Densidade Funcional , Modelos Químicos , Máquina de Vetores de Suporte
4.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854076

RESUMO

An in vitro model of human meiosis would accelerate research into this important reproductive process and development of therapies for infertility. We have developed a method to induce meiosis starting from male or female human pluripotent stem cells. We demonstrate that DNMT1 inhibition, retinoid signaling activation, and overexpression of regulatory factors (anti-apoptotic BCL2, and pro-meiotic HOXB5, BOLL, or MEIOC) rapidly activates meiosis, with leptonema beginning at 6 days, zygonema at 9 days, and pachynema at 12 days. Immunofluorescence microscopy shows key aspects of meiosis, including chromosome synapsis and sex body formation. The meiotic cells express genes similar to meiotic oogonia in vivo, including all synaptonemal complex components and machinery for meiotic recombination. These findings establish an accessible system for inducing human meiosis in vitro.

5.
Elife ; 122023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117283

RESUMO

The psychoactive component of cannabis, ∆9-THC, affects cell growth and metabolism in early embryonic cell types in mice.


Assuntos
Cannabis , Alucinógenos , Animais , Camundongos , Agonistas de Receptores de Canabinoides , Ciclo Celular , Proliferação de Células
6.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803359

RESUMO

An in vitro model of human ovarian follicles would greatly benefit the study of female reproduction. Ovarian development requires the combination of germ cells and several types of somatic cells. Among these, granulosa cells play a key role in follicle formation and support for oogenesis. Whereas efficient protocols exist for generating human primordial germ cell-like cells (hPGCLCs) from human induced pluripotent stem cells (hiPSCs), a method of generating granulosa cells has been elusive. Here, we report that simultaneous overexpression of two transcription factors (TFs) can direct the differentiation of hiPSCs to granulosa-like cells. We elucidate the regulatory effects of several granulosa-related TFs and establish that overexpression of NR5A1 and either RUNX1 or RUNX2 is sufficient to generate granulosa-like cells. Our granulosa-like cells have transcriptomes similar to human fetal ovarian cells and recapitulate key ovarian phenotypes including follicle formation and steroidogenesis. When aggregated with hPGCLCs, our cells form ovary-like organoids (ovaroids) and support hPGCLC development from the premigratory to the gonadal stage as measured by induction of DAZL expression. This model system will provide unique opportunities for studying human ovarian biology and may enable the development of therapies for female reproductive health.


Ovaries are responsible for forming the eggs humans and other mammals need to reproduce. Once mature, the egg cell is released into the fallopian tube where it can be potentially fertilized by a sperm. Despite their crucial role, how eggs are made in the ovary is poorly understood. This is because ovaries are hard to access, making it difficult to conduct experiments on them. To overcome this, researchers have built artificial ovaries in the laboratory using stem cells from the embryos of mice which can develop into all cell types in the adult body. By culturing these embryonic stem cells under special conditions, researchers can convert them in to the two main cell types of the developing ovary: germ cells which go on to form eggs, and granulosa cells which help eggs grow and mature. The resulting lab-grown ovary can make eggs that produce live mice when fertilized. This approach has also been applied to human induced pluripotent stem cells (iPSCs), adult human cells which have been reprogrammed to a stem-like state. While this has produced human germ cells, generating human granulosa cells has been more challenging. Here, Pierson Smela, Kramme et al. show that activating a specific set of transcription factors (proteins that switch genes on or off) in iPSCs can make them transition to granulosa cells. First, the team tested random combinations of 35 transcription factors which, based on previous literature and genetic data, were likely to play a role in the formation of granulosa cells. This led to the identification of a small number of factors that caused the human iPSCs to develop features and carry out roles seen in mature granulosa cells; this includes producing an important reproductive hormone and supporting the maturation of germ cells. Pierson Smela, Kramme et al. found that growing these granulosa-like cells together with germ cells (also generated via iPSCs) resulted in structures similar to ovarian follicles which help eggs develop. These findings could help researchers build stable systems for studying how granulosa cells behave in human ovaries. This could lead to new insights about reproductive health.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Feminino , Fatores de Transcrição/metabolismo , Ovário/metabolismo , Oogênese , Diferenciação Celular
7.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35789697

RESUMO

CRISPR-Cas systems protect bacteria from viral nucleic acids. The Cas9 enzyme cleaves bacteriophage DNA preventing viral genes from being expressed in the bacterial host. In this work, the Cas9 protein is repurposed to function as an intracellular mammalian defense mechanism that protects human cells from cytomegaloviral DNA. The A549 lung adenocarcinoma cell line was genetically modified to express a doxycycline-inducible Cas9, and a guide RNA targeting a luciferase reporter plasmid. This investigation revealed a robust inducible Cas9 system that successfully reduced the expression of the luciferase viral reporter by up to 98% and by 75% on average.

8.
Chem Sci ; 12(41): 13902-13908, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760176

RESUMO

The 1,3-diyne and diynophile in hexadehydro-Diels-Alder (HDDA) reaction substrates are typically tethered by linker units that consist of C, O, N, and/or S atoms. We describe here a new class of polyynes based on silicon-containing tethers that can be disposed of and/or functionalized subsequent to the HDDA reaction. The cyclizations are efficient, and the resulting benzoxasiloles are amenable to protodesilylation, halogenation, oxygenation, and arylation reactions. The presence of the silicon atom can also override the innate mode of cyclization in some cases, an outcome attributable to a ß-silyl effect on the structure of intermediate diradicals. Overall, this strategy equates formally to an otherwise unknown, bimolecular HDDA reaction and expands the versatility of this body of aryne chemistry.

9.
Nat Commun ; 11(1): 1282, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152282

RESUMO

PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts.


Assuntos
Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteólise , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacologia , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Transcriptoma/genética
10.
Wellcome Open Res ; 4: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583280

RESUMO

Background: Potentially novel regulators of early human germline development have been identified recently, including SOX15 and SOX17, both of which show specific expression in human primordial germ cells. SOX17 is now known to be a critical specifier of human germ cell identity. There have been suggestions, as yet without evidence, that SOX15 might also play a prominent role. The early human germline is inaccessible for direct study, but an in vitro model of human primordial germ cell-like cell (hPGCLC) specification from human embryonic stem cells (hESCs) has been developed. This enables mechanistic study of human germ cell specification using genetic tools to manipulate the levels of SOX15 and SOX17 proteins to explore their roles in hPGCLC specification. Methods: SOX15 and SOX17 proteins were depleted during hPGCLC specification from hESCs using the auxin-inducible degron system, combined with a fluorescent reporter for tracking protein levels. Additionally, SOX15 protein was overexpressed using the ProteoTuner system. Protein-level expression changes were confirmed by immunofluorescence. The impact on hPGCLC specification efficiency was determined by flow cytometry at various time points. qPCR experiments were performed to determine some transcriptional effects of SOX15 perturbations. Results: We observed specific SOX15 expression in hPGCLCs by using immunofluorescence and flow cytometry analysis. Depletion of SOX15 had no significant effect on hPGCLC specification efficiency on day 4 after induction, but there was a significant and progressive decrease in hPGCLCs on days 6 and 8. By contrast, depletion of SOX17 completely abrogated hPGCLC specification. Furthermore, SOX15 overexpression resulted in a significant increase in hPGCLC fraction on day 8. qPCR analysis revealed a possible role for the germ cell and pluripotency regulator PRDM14 in compensating for changes to SOX15 protein levels. Conclusions: SOX17 is essential for hPGCLC specification, yet SOX15 is dispensable. However, SOX15 may have a role in maintaining germ cell identity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA